试证:f(x)是多项式,如果(x-1)整除f(x^n),那么(x^n-1)整除f(x^n). 证明试证:f(x)是多项式,如果(x-1)整除f(x^n),那么(x^n-1)整除f(x^n).证明由(x-1)整除f(x^n),则存在多项式Q(x)有f(x^n)=Q(x)(x-1)将x=1代入上式得f(

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 22:25:45
试证:f(x)是多项式,如果(x-1)整除f(x^n),那么(x^n-1)整除f(x^n). 证明试证:f(x)是多项式,如果(x-1)整除f(x^n),那么(x^n-1)整除f(x^n).证明由(x-1)整除f(x^n),则存在多项式Q(x)有f(x^n)=Q(x)(x-1)将x=1代入上式得f(
xN@_Tx_D-LlcHhMb(ħYʉWp`H4',3]YW EimC`n3/!lm9xG]A)-_.1}^^]_6CϷwe/ d FwZ[>9Bι+( n Aqdc,Ț$(r}jDu%5it=yF ZV)R[(IcgCb,_v Nμs6E,Z~}Qҙ~U͟<

试证:f(x)是多项式,如果(x-1)整除f(x^n),那么(x^n-1)整除f(x^n). 证明试证:f(x)是多项式,如果(x-1)整除f(x^n),那么(x^n-1)整除f(x^n).证明由(x-1)整除f(x^n),则存在多项式Q(x)有f(x^n)=Q(x)(x-1)将x=1代入上式得f(
试证:f(x)是多项式,如果(x-1)整除f(x^n),那么(x^n-1)整除f(x^n). 证明
试证:f(x)是多项式,如果(x-1)整除f(x^n),那么(x^n-1)整除f(x^n).
证明由(x-1)整除f(x^n),则存在多项式Q(x)有
f(x^n)=Q(x)(x-1)
将x=1代入上式得f(1)=0,故存在多项式Q1(x)有f(x)=Q1(x)(x-1),
于是得f(x^n)=Q1(x^n)(x^n-1),故(x^n-1)整除f(x^n).
我不知道为什么由"f(1)=0"可以得到"存在多项式Q1(x)有f(x)=Q1(x)(x-1)"

试证:f(x)是多项式,如果(x-1)整除f(x^n),那么(x^n-1)整除f(x^n). 证明试证:f(x)是多项式,如果(x-1)整除f(x^n),那么(x^n-1)整除f(x^n).证明由(x-1)整除f(x^n),则存在多项式Q(x)有f(x^n)=Q(x)(x-1)将x=1代入上式得f(
f(1)=0,故1是f(x)的根,x-1是f(x)的因式,所以:存在多项式Q(x)有f(x)=Q(x)(x-1)

试证:f(x)是多项式,如果(x-1)整除f(x^n),那么(x^n-1)整除f(x^n). 证明试证:f(x)是多项式,如果(x-1)整除f(x^n),那么(x^n-1)整除f(x^n).证明由(x-1)整除f(x^n),则存在多项式Q(x)有f(x^n)=Q(x)(x-1)将x=1代入上式得f( 设f(x)是整系数多项式,如果f(1),f(0)都是奇数,则f(x)没有整数根.高等代数习题 关于多项式与因式分解的难题如果一个多项式f(x)具有如下性质:f(x)是f(x^2)的一个因式,则称f(x)为一个美丽多项式.如,g(x)=x-1与h(x)=x就是一个美丽多项式,而k(x)=x+2则不是.注 f(x)是一实函数,如果对任意x∈R,存在x的某个领域,在这个领域内,f(x)是多项式,证明:f(x)是多项式. 设f(x)是整系数多项式且f(0),f(1)都是奇数,证明f(x)没有有理根 已知f(X)是二次多项式,f(x+1)-f(x)=8x+3求f(X)的表达式 已知f(X)是二次多项式,f(x+1)-f(x)=8x+3求f(X)的表达式 已知f(x)是二次多项式,且f(x+1)-f(x)=8x+3,求f(x) "如果(x-1)整除f(x^n)那么(x^n-1)整除f(x^n)"中的证明问题试证:f(x)是多项式,如果(x-1)整除f(x^n),那么(x^n-1)整除f(x^n).证明由(x-1)整除f(x^n),则存在多项式Q(x)有f(x^n)=Q(x)(x-1)将x=1代入上式得f(1)=0,故存 如果域F上七次多项式f(x),使得(x-1)^4|(f(x)+1),(x+1)^4|(f(x)-1).试求f(x) 高等代数多项式重根问题?如果f'(x)|f(x),而a为f'(x)的k重根,那么a为f(x)的k+1重根!定理:如果不可约多项式p(x)是f(x)的k 重因式(k≥1),那么它是导数f'(x)的k-1重 因式.这个定理反过来不是不一定对吗? 已知f(x)是三次多项式 已知f(x)是关于X的多项式函数 f(x)=x^2+2Xf'(1)求f'(0) 高等代数多项式定理的逆定理证明没看懂?逆定理:设p(x)是次数大于零的多项式,如果对于任何多项式f(x),由p(x)|f(x)g(x)可以推出p(x)|f(x)或p(x)|g(x),那么p(x)是不可约多项式.答案是:反证法,设p(x) 请证明因式定理:如果f(a)=0,那么(x-a)是多项式f(x)的因式 已知多项式f(x)除以-2x的平方得到的商是6x的平方-3x+1,球员来的多项式f(x) 因式定理是神马?什么叫“如果多项式f(a)=0,那么多项式f(x)必定含有因式x-a.反过来,如果f(x)含有因式x-a,那么,f(a)=0. 函数解析式的解法一f(x)为多项式 f(x+1)+f(x-1)=2x²-2x+4求 f(x)解析式( 另 这里的多项式是啥意思) 二 如果函数f(x)满足 af(x)+f(1/x)=ax,x∈R且x≠0a为常数,且 a≠正负1 求f(x)的解析式 三 a²=3 ab+