已知Sn=1+3/2+5/4+7/6+,+(2n-1)/(2^(n-1)) 如何用错位相减法求和.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:35:18
已知Sn=1+3/2+5/4+7/6+,+(2n-1)/(2^(n-1)) 如何用错位相减法求和.
xJ0WcȗuP ``"HdѽMS_/[A) \}NbY<><1%;rq& e:/yu,p򋵷DeZ'g$6:w| 1!fXTʦ^ߪ @ᷨNm{z2Ơ> HNoYtq~Oua6z:Ij2Qr&NCc y

已知Sn=1+3/2+5/4+7/6+,+(2n-1)/(2^(n-1)) 如何用错位相减法求和.
已知Sn=1+3/2+5/4+7/6+,+(2n-1)/(2^(n-1)) 如何用错位相减法求和.

已知Sn=1+3/2+5/4+7/6+,+(2n-1)/(2^(n-1)) 如何用错位相减法求和.
Sn=1+3/2+5/4+7/8+,+(2n-3)/(2^(n-2)) +(2n-1)/(2^(n-1))
1/2Sn=1/2+3/4+5/8+7/16+,+(2n-3)/(2^(n-1)) +(2n-1)/(2^n)
Sn-1/2Sn=1+(3-1)/2+(5-3)/2^2+(7-5)/2^3+,+[(2n-1)-(2n-3)]/(2^(n-1))-(2n-1)/(2^n)
1/2Sn=1+2/2+2/2^2+2/2^3+,+2/(2^(n-1))-(2n-1)/(2^n)
=1+2*[1/2+1/2^2+1/2^3+,+1/(2^(n-1)]-(2n-1)/(2^n)
=1+2*[1-1/2^(n-1)]-(2n-1)/(2^n)
Sn=2+4*[1-1/2^(n-1)]-(2n-1)/[2^(n-1)]
注:按照通项计算题中第四项应为7/8

已知集合{1}{2,3}{4,5,6}{7,8,9,10} ……设Sn是第n个集合中元素之和,则Sn= 强大的数学题:设数列{An}的前N项和为Sn已知A1=.设数列{An}的前N项和为Sn,已知A1=1,A2=6,A3=11,且(5n-8)Sn+1 - (5n+2)Sn = -20n-8 (n=1,2,3,4,.)请证明数列{An}为等差数列 已知等差数列-10,-7,-4,-1,2,5,…的前n项和为Sn,求Sn的最小值,及Sn最大时,相应的n. 已知数列an前n项和为Sn,且满足a1=4,Sn+Sn+1=5/3an+1 已知Sn求an:(1)Sn=3n²-5n (2)Sn =2的n次方-3 . 已知Sn=1+1/2+1/3+1/4+1/5+……+1/n,求Sn通项公式 已知数列an,Sn>1,6Sn=(an +1)(an +2) 求通项 已知数列{an}的前n项和为Sn=1+2+3+4+…+n,求f(n)= Sn /(n+32)Sn+1的最大值f(n)= Sn /(n+32)Sn+1 Sn为分子...(n+32)Sn+1 为分母...看不出来么? 数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2/n Sn(n=1,2,3,...)证明:(1)数列{Sn/n}是等比数列.(2)Sn+1=4*an 设数列的前n项和为Sn,已知a1=1,an+1=(n+2/n)*Sn,(n=1,2,3,...) 1,求证Sn/n是等比数列 2,Sn+1=4an 已知数列{an}的前n项和Sn,且a1=1,a2=6,Sn=3Sn-1-2Sn-2+n^2(n≥3)求an 数列{an}的前n项和记为Sn,已知a1=1,an+1=(n+2*)Sn/n(n=1,2,3…),证明数列{Sn/n}是等比数列;Sn+1=4an 已知等差数列an和bn的前n项和分别为Sn和Sn`,且Sn:Sn`=5n+2:3n+1,则a9:b9的值为? Sn=1+ 4/5 + 7/5² +……+ (3n-2)/5^(n-1)求Sn. 已知Sn=1+3/2+5/4+7/6+,+(2n-1)/(2^(n-1)) 如何用错位相减法求和. 设Sn=1*4+2*7+.n(3n+1)则Sn= 已知an=(2n+1)*3^n,求Sn 已知数列前n项和为Sn=1+2+2+3+3+3+4+4+4+4+5+5+5+5+.+n+n+n+n+n+.n,求Sn已知数列前n项和为Sn=1+2+2+3+3+3+4+4+4+4+5+5+5+5+5+......+n+n+n+n+n+......n,求Sn