求证双曲线x^2/a^2-y^2/b^2=1上任意一点p到两条渐近线距离之积为定值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:52:23
求证双曲线x^2/a^2-y^2/b^2=1上任意一点p到两条渐近线距离之积为定值
x){Ƨ=fozkE~bn%N35|Zhx޴idž';<َ /Ojy}e~|aMR>/_~OGNXj|[C UkUd@ <܁gmN81@nuhN۱+P!jRmMRvbeY@[@b!i8U}4e0?lx{l<;P4U$

求证双曲线x^2/a^2-y^2/b^2=1上任意一点p到两条渐近线距离之积为定值
求证双曲线x^2/a^2-y^2/b^2=1上任意一点p到两条渐近线距离之积为定值

求证双曲线x^2/a^2-y^2/b^2=1上任意一点p到两条渐近线距离之积为定值
设P(x,y)
x^2/a^2 - y^2/b^2 =1
b^2*x^2 - a^2*y^2 =a^2*b^2
双曲线的渐近线bx±ay=0
设P到两渐近线距离为d1 d2
d1=|bx+ay|/√(a^2+b^2)
d2=|bx-ay|/√(a^2+b^2)
d1*d2=|b^2*x^2-a^2*y^2|/(a^2+b^2)
=a^2*b^2/(a^2+b^2)
所以是常数

已知双曲线(X^2)/4-(Y^2)/5=1 ,直线l与双曲线渐近线交于AB两点,与双曲线的两支分别交于CD两点已知双曲线(X^2)/4-(Y^2)/5=1 ,直线l与双曲线渐近线交于A、B两点,与双曲线的两支分别交于C、D两点,求证 求证双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)上任意一点到两条渐近线距离之积为定值 如图,直线l交双曲线x^2/a^2-y^2/b^2=1及其渐近线于A,B,C,D四点,求证:AB=CD 求双曲线离心率的变化范围过双曲线(x^2/a^2)-(y^2/b^2)=1的右焦点F作双曲线斜率大于零的渐近线的垂线l,垂足为P,设l与双曲线的左、右两支相交于A、B.(1)求证:点P在双曲线的右准线上.(2)求 设直线交双曲线x^2/a^2-y^2/b^2=1及渐近线于A,B,C,D四点,求证在双曲线及渐近线间的线段相等 已知双曲线x^2/a^2-y^2/b^2=1(a>0,b>0),定直线L:x=a^2/c与一条渐近线L交于点P,F是双曲线上的右焦点.1.求证PF⊥L2.若|PF|=3,且双曲线的离心率e=5/4,求双曲线方程 下列说法错误的是( )A.双曲线y=1/x 是轴对称图形B.双曲线y=2/x是中心对称图形 C.双曲线下列说法错误的是( )A.双曲线y=1/x 是轴对称图形B.双曲线y=2/x是中心对称图形 C.双曲线y=2/x轴对称图形 D 已知双曲线x^2/4-y^2=1,P是双曲线上一点,求证:P点到双曲线两条渐近线已知双曲线x^2/4-y^2=1,P是双曲线上一点1 求证:P点到双曲线两条渐近线的距离的乘积是一个定值2 已知点A(3,0),求|PA|的最小 已知双曲线x^2/a^2-y^2/b^2=1(a>0b 已知双曲线a^2|x^2-b^2|y^2=1(a>0,b 若双曲线x^2/a^2-y^2/b^2=1(a>0,b 求证双曲线x^2/a^2-y^2/b^2=1上任意一点p到两条渐近线距离之积为定值 已知双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)右准线L2与一条渐近线L交于点P,F是双曲线上的右焦点.1.求证PF⊥L2.若|PF|=3,且双曲线的离心率e=5/4,求双曲线的标准方程 过双曲线y^2-3x^2=3的上支上一点P作双曲线交两条渐进线分别于点A,B.(1)求证:向量OA·向量OB为定值 选修2-1 双曲线过双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的右焦点F作双曲线在第一、第三象限的渐近线的垂线l,垂足为P,l与双曲线的左、右支的交点分别为A,B.(1)求证:P在双曲线的右准线上;(2) 设双曲线x^2/a^2 - y^2/b^2=1 (0 设双曲线x^2/a^2-y^2/b^2=1(0 设双曲线X^2/a^2-Y^2/b^2=1(0