设cos(a-b/2)=-1/9,sin(a/2-b)=2/3,其中a属于(π/2,π),b属于(0,π/2),求cos(a+b)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 03:31:19
设cos(a-b/2)=-1/9,sin(a/2-b)=2/3,其中a属于(π/2,π),b属于(0,π/2),求cos(a+b)
xRN@Y&@ҺrD~`j|m0.%M(itWw}dns=evp3<j2}w1[>nD m+wC "rIu:BW~6R\ŗ9Ji3 ⋿NPUKJEiS!YGF[뢡t"A-9_J! /EnyGyiSp*јQ bH)iJ-dÿ %|gL0jwmR`(

设cos(a-b/2)=-1/9,sin(a/2-b)=2/3,其中a属于(π/2,π),b属于(0,π/2),求cos(a+b)
设cos(a-b/2)=-1/9,sin(a/2-b)=2/3,其中a属于(π/2,π),b属于(0,π/2),求cos(a+b)

设cos(a-b/2)=-1/9,sin(a/2-b)=2/3,其中a属于(π/2,π),b属于(0,π/2),求cos(a+b)
由sinA-cosA=1得sin(a-b/2)=九分之四倍根号5,cos(a/2-b)=3分之根号5
由cos(a-b/2)*cos(a/2-b)-sin(a-b/2)*sin(a/2-b)=cos(a/2+b/2)得cos(a/2+b/2)=负3分之根号5
由cos2A=2cosA^2-1得cos(a+b) =1/9

cos(a-b/2)=-1/9,sin(a/2-b)=2/3
a∈(π/2,π),b∈(0,π/2)
(a-b/2)∈(π/4,π),(a/2-b)∈(0,π/2)
sin(a-b/2)=根号[1-cos^2(a-b/2)]=4根号5/9
cos(a/2-b)=根号[1-sin^2(a/2-b)]=根号5/3
cos(a-b/2) * cos(a/2-b)-...

全部展开

cos(a-b/2)=-1/9,sin(a/2-b)=2/3
a∈(π/2,π),b∈(0,π/2)
(a-b/2)∈(π/4,π),(a/2-b)∈(0,π/2)
sin(a-b/2)=根号[1-cos^2(a-b/2)]=4根号5/9
cos(a/2-b)=根号[1-sin^2(a/2-b)]=根号5/3
cos(a-b/2) * cos(a/2-b)-sin(a-b/2) * sin(a/2-b)=cos[(a-b/2)-(a/2-b)]
(-1/9) * 根号5/3 - 4根号5/9 * 2/3 = cos[(a+b)/2]
cos[(a+b)/2]=-根号5/3
cos^2(a+b)=2cos^2[(a+b)/2]-1=2*(根号5/3)^2-1=1/9

收起