在三角形ABC中,求u=2(cotA+cotB+cotC)+3cotAcotBcotC的最小值.题可能有些难,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 16:51:28
在三角形ABC中,求u=2(cotA+cotB+cotC)+3cotAcotBcotC的最小值.题可能有些难,
xSN@~NP j x}!`BbSHHNH}ͩ,vfgqb; nz: M?|ǚ<C=X@FV[d5hLˡxI'3 h/&gӜcneС #bVJ ZeVj}͚Whrh`B6s_n@Xd݊?$!ԧdlENՈ.bPvT7O# tn";8H C"{7taE{XF4mv^@VI 3ΝJǮ Yv0w]R\`8Λ', i0)>́_QW谺0u%5wunsNTCp)>[q{v$,9]LxӐQ9>֖6㱥Tza%jb){-%C*3Owh(Cd#vLz";hװ8 ^2#/*+OnN2p@VI#g;d{.%2&3U֬b?tqp|zAl Hgwrh*s'3N{ y]*)1

在三角形ABC中,求u=2(cotA+cotB+cotC)+3cotAcotBcotC的最小值.题可能有些难,
在三角形ABC中,求u=2(cotA+cotB+cotC)+3cotAcotBcotC的最小值.
题可能有些难,

在三角形ABC中,求u=2(cotA+cotB+cotC)+3cotAcotBcotC的最小值.题可能有些难,
这里我只能提供一个思路,我也不确定是否正确.
这是一个二元的最值问题,我觉得没有什么很适合的解法.最小二乘法也不太适用.我觉得就是把u当已知看,列出一个方程,看满足的式子来确定其取值范围.作者参考一下,或者是供其他回答问题的同志参考一下呵.
令m=cotA+cotC,n=cotA*cotC."^"表示平方
最后化简整理成一个双曲线等式得:2(m+u/4)^2-3(n-1/6)=u^2/8-9/4
显然m,n范围是R.所以要使上式的m,n取到R,则最右边的式子应该等于0才行,否则一定有一些值没有取到,即变成了一个一次相关函数可以取所有值了.此时u的最小值也求出了.为-3倍根号2.我也不确定是否准确,水平有限望见谅呵···