12个球 有一次品 不知轻或重 天平称几次能称出来

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 17:01:01
12个球 有一次品 不知轻或重 天平称几次能称出来
xYR9d|ᲡR$[1l@ `;1c2Ҍ=-ia e(t%5ӯ謤 3lUvg;?ƙs\g}~w+/x -1uIe+C]@2]z\fybz_xanS8r fU[^}Ȓ$"^gw6MvUڍ=s*vNb'K`jڬg 6a4 'f-.r?29IHdxec[%cR1)mEJ1v(n(pϰ2%aj[99I侜FTz (F>n.]%5,|MĈkr=Og/qay閚 _XL47fP- ]ѿi w(oAk2e@ˣ[rbX=g9-0 GrB2*` oM<8?]Vwo^nֈ~u7EeCX{( jJ9-qѵ]í^19&115fbfMc6bF٘$l}6FGviW LR\ `&(I[^Uq[nnjz|•%T7\$Ԓ %i:șd&4X;EX=/^!Txwc׊!m̐D@w?Y1[zt \MڴUF: VJ$M;Yto|B݊j:ySN5#1g>?j>.5b_Q{}0my_I4z"e_NLCU5??u DTWI )JtR;MD};D^j^vCZjRv )6k:1y6LO& ?BR‹z| 16aH~' ;K?z'Â"kZHcz}^~d/5XqQp#]0- }\HtH0/z!WM}f{(2zW `ԅ X]>=c Lm8+U?=҂[Ug7v{XUzs`_W,CXX`JF|&(ÿ*,

12个球 有一次品 不知轻或重 天平称几次能称出来
12个球 有一次品 不知轻或重 天平称几次能称出来

12个球 有一次品 不知轻或重 天平称几次能称出来
我能想到的:
分4组
两组先比,每次换掉一组,最多3次找出不同的一组.
分3个
最多称两次找到不同的一个.
总的来讲,最多5次完成,最少3次完成.
不知是否有更好的做法

我觉得分三组
1、先四个一组比对,一次就可以找出质量不同的一组,再分两组
分三组
第一次比对,如果抽出两组的质量相同,那么剩下的一组就为带次品的一组。如果抽出两组的质量不相同,则要第二次,将其中一组换下,如果调换后天平平衡,那么取走的一组就是带次品;如果更换后天平仍然不平衡,那么第一次未取走的一组就带有次品。
2、之后从剩下正常的两组中任意抽出两个做参照组,再从刚...

全部展开

我觉得分三组
1、先四个一组比对,一次就可以找出质量不同的一组,再分两组
分三组
第一次比对,如果抽出两组的质量相同,那么剩下的一组就为带次品的一组。如果抽出两组的质量不相同,则要第二次,将其中一组换下,如果调换后天平平衡,那么取走的一组就是带次品;如果更换后天平仍然不平衡,那么第一次未取走的一组就带有次品。
2、之后从剩下正常的两组中任意抽出两个做参照组,再从刚刚分的两组之间抽出其中两个作为参照组比对,同样一次可以找出质量不同的一组(两个)。
3、最后从质量不同的两个中抽出一个与之前称量正常的任意一个比对,可以找出不同。
最少3次,最多4次就可以完成
希望对你有所帮助

收起

我以前做过12个球的问题,其实也一样的,就是在12个球里面用天平称三次选出重量不一样的球,并确定球是轻还是重!
刚刚在网上找到也有很多相关的资料,写的也比较简单易懂,我就复制上来你看看。
将十二个球编号为1-12。
第一次,先将1-4号放在左边,5-8号放在右边。
1.如果右重则坏球在1-8号。
第二次将2-4号拿掉,将6-8号从右边移到左边,把9-...

全部展开

我以前做过12个球的问题,其实也一样的,就是在12个球里面用天平称三次选出重量不一样的球,并确定球是轻还是重!
刚刚在网上找到也有很多相关的资料,写的也比较简单易懂,我就复制上来你看看。
将十二个球编号为1-12。
第一次,先将1-4号放在左边,5-8号放在右边。
1.如果右重则坏球在1-8号。
第二次将2-4号拿掉,将6-8号从右边移到左边,把9-11号放
在右边。就是说,把1,6,7,8放在左边,5,9,10,11放在右边。
1.如果右重则坏球在没有被触动的1,5号。如果是1号,
则它比标准球轻;如果是5号,则它比标准球重。
第三次将1号放在左边,2号放在右边。
1.如果右重则1号是坏球且比标准球轻;
2.如果平衡则5号是坏球且比标准球重;
3.这次不可能左重。
2.如果平衡则坏球在被拿掉的2-4号,且比标准球轻。
第三次将2号放在左边,3号放在右边。
1.如果右重则2号是坏球且比标准球轻;
2.如果平衡则4号是坏球且比标准球轻;
3.如果左重则3号是坏球且比标准球轻。
3.如果左重则坏球在拿到左边的6-8号,且比标准球重。
第三次将6号放在左边,7号放在右边。
1.如果右重则7号是坏球且比标准球重;
2.如果平衡则8号是坏球且比标准球重;
3.如果左重则6号是坏球且比标准球重。
2.如果天平平衡,则坏球在9-12号。
第二次将1-3号放在左边,9-11号放在右边。
1.如果右重则坏球在9-11号且坏球较重。
第三次将9号放在左边,10号放在右边。
1.如果右重则10号是坏球且比标准球重;
2.如果平衡则11号是坏球且比标准球重;
3.如果左重则9号是坏球且比标准球重。
2.如果平衡则坏球为12号。
第三次将1号放在左边,12号放在右边。
1.如果右重则12号是坏球且比标准球重;
2.这次不可能平衡;
3.如果左重则12号是坏球且比标准球轻。
3.如果左重则坏球在9-11号且坏球较轻。
第三次将9号放在左边,10号放在右边。
1.如果右重则9号是坏球且比标准球轻;
2.如果平衡则11号是坏球且比标准球轻;
3.如果左重则10号是坏球且比标准球轻。
3.如果左重则坏球在1-8号。
第二次将2-4号拿掉,将6-8号从右边移到左边,把9-11号放
在右边。就是说,把1,6,7,8放在左边,5,9,10,11放在右边。
1.如果右重则坏球在拿到左边的6-8号,且比标准球轻。
第三次将6号放在左边,7号放在右边。
1.这次不可能右重。
2.如果平衡则5号是坏球且比标准球轻;
3.如果左重则1号是坏球且比标准球重;

收起

这个是把12个球分成三组 有两种可能~
平衡和不平衡~平衡很好答 如果不平衡的话 设左面的4个球是A1 A2 A3 A4右面是B1 B2 B3 B4
把A4 B4拿掉把A3放到B4的位置 A3 A4的位置放两个C组的球就能(而且第一次称量的时候记住天平哪边高)算出到底那边的球是坏求 第三步就能称出哪个球是坏球~
----------------------------...

全部展开

这个是把12个球分成三组 有两种可能~
平衡和不平衡~平衡很好答 如果不平衡的话 设左面的4个球是A1 A2 A3 A4右面是B1 B2 B3 B4
把A4 B4拿掉把A3放到B4的位置 A3 A4的位置放两个C组的球就能(而且第一次称量的时候记住天平哪边高)算出到底那边的球是坏求 第三步就能称出哪个球是坏球~
-------------------------------------
分三组:每组四个,第一组编号1-4,第二组5-8,第三组9-12.
第一次称:天平左边放第一组,右边放第二组。
A 第一种可能:平衡。则不同的在第三组。
接下来可以在左边放第9、10、11号,右边放1、2、3号三个正常的。
a.如果平衡,则12号是不同的;
b.如果左重右轻,则不同的在9、10、11号中,而且比正常球重。再称一次:9放左边,10放右边,如果平衡,则11号是不同的;如果左重右轻,则9号是不同的,如果右重左轻,则10号是不同的。
c.如果左轻右重,道理同b
B 第二种可能:左重右轻,则不同的在1-8号中,但不知比正常的轻还是重。
第二次称:左边放1、2、5号,右边放6、9、3号。
a.如果平衡。则不同的在4、7、8中。可以称第三次:左边放4、7,右边放9、10。如果平衡,则8是不同;如果左重右轻,则4是不同;如果左轻右重,则7是不同。
b.仍然左重右轻。则不同的在位置没有改变的1、2、6中。可以称第三次:左边放1、6,右边放9、10。如果平衡,则2是不同; 如果左重右轻,则1是不同;如果左轻右重,则6是不同。
c:左轻右重。则不同的在5、3、中,因为只有它们改变了原来的位置。可以称第三次:左放5,3,右放9,10。如果左轻右重,则5是不同,如果左重右轻,则3是不同。
C 第三种可能:左轻右重,道理同B
至此,不论发生任何情况,称三次都可以找出不同,而且知道比正常的轻了还是重了。

收起

12个球 有一次品 不知轻或重 天平称几次能称出来 12个球,其中有一个次品,但是不知道它比正品是重还是轻.用一杆天平称,称三次把这个次品找出来? 有12个球,其中11个正品重量相同,一个次品,用天平称3次,请找出次品,确定它是轻还是重 15个零件有一个次品与正品不一样重(或轻或重),用天平称至少几次可以找出次品? 现有12个球,11个正常球,1个次品球(不知是重了还是轻了),要求用天平(只能称3次)找出那个次品球 有12个外观相同的球,有一个重量不同,不知轻还是重,一台天平,称3次.找出质量不同的那个 找次品(有点难)已知有12个球,其中一个为次品,但不知是比其他球重还是轻,限用三次天平把次品找出来 有12个乒乓球,其中一个是次品,但不知道次品比正品轻还是重,现有一无砝码天平,称3次? 有12个球,其中有一次品,并且轻重关系不知.有无砝码天平一架.称3次及其与正品轻重关系 有80个球,其中有一次品,它比真品轻,怎样用无砝码天平称四次,把次品 找出来? 天平找次品,3个物体,1个次品,不知次品比正品轻还是重,几次找出来? 从12个乒乓球挑出次品,里面有一个轻的,怎样用天平称出来, 从12个乒乓球挑出次品,里面有一个轻的,怎样用天平称出来 有8个外观相同的球,一个次品轻用天平称几次可以找出次品, 有12个球,其中有一个球,不知是轻还是重?至少用三次能保证把那个球找出来,用天平称. 有12个乒乓球,其中有1分量与其他的不同,(不知重轻).现有一个天平,问;只让你称3次,找出那个球 问有十二个小球,其中一球或轻或重,用天平称三次,找出那个或轻或重的小球. 有12个零件其中1个是次品,次品比较重些,你能用天平称的方法找出次品吗?至少要称几次?