设f1f2为双曲线x^2/4-y^2=1的两个焦点,点p在双曲线上且pf1垂直pf2,则三角形pf1f2的面积是多少?有个疑问,在双曲线定义中平面内到两定点f1f2距离之差的绝对值等于常数的点的轨迹,其中常数是多
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 11:22:23
xN@P[R:,;D$H®F4ѝ!`k0!@L(D\߅tʊWp1>n\̙s?'64ל&$];w:ƀ.7g1WZ`7iд-eJ+[z0
yMrH^wdR381mvHTY,,L;%lX=VD.$e
4wPdd:MǴ[bYc6I˝~p[|S"Z#P4@]F DOא s}ݏ BMJ>UTnx>&}x^1JҷR'>&j$ YDxlNA?4y6M[#@_Я
T6~w SFig}}
设f1f2为双曲线x^2/4-y^2=1的两个焦点,点p在双曲线上且pf1垂直pf2,则三角形pf1f2的面积是多少?有个疑问,在双曲线定义中平面内到两定点f1f2距离之差的绝对值等于常数的点的轨迹,其中常数是多
设f1f2为双曲线x^2/4-y^2=1的两个焦点,点p在双曲线上且pf1垂直pf2,则三角形pf1f2的面积是多少?
有个疑问,在双曲线定义中平面内到两定点f1f2距离之差的绝对值等于常数的点的轨迹,其中常数是多少?
设f1f2为双曲线x^2/4-y^2=1的两个焦点,点p在双曲线上且pf1垂直pf2,则三角形pf1f2的面积是多少?有个疑问,在双曲线定义中平面内到两定点f1f2距离之差的绝对值等于常数的点的轨迹,其中常数是多
设:PF1=m,PF2=n,(m>n),∴m-n=2*2===>m=4+n
c=√(4+1)=√5
在Rt△PF1F2中:m²+n²=(2c)²===>(4+n)²+n²=20===>n²+4n-2=0
∴n=√6-2,∴m=√6+2
∴S△PF1F2=mn/2=(6-4)/2=1
在双曲线定义中平面内到两定点f1f2距离之差的绝对值等于常数的点的轨迹,其中常数是2a
设f1f2为双曲线x^2/4-y^2=1的两个焦点,点p在双曲线上且pf1垂直pf2,则三角形pf1f2的面积是多少?有个疑问,在双曲线定义中平面内到两定点f1f2距离之差的绝对值等于常数的点的轨迹,其中常数是多
双曲线x^2/4-y^2/b^2=1的左右焦点为F1F2,点P在双曲线上,使|Pf1|,F1f2|,|pf2|成等差数列,且|pf2|
双曲线X^2/4-y^2/b^2=1左右焦点为F1F2,P为双曲线上一点,若绝对值PF1 *绝对值PF2=绝对值F1F2^2,求双曲线且绝对值PF2
设F1F2为双曲线x^2/4-y^2/4=1的两个焦点,点P在双曲线上且满足∠F1PF2=90°,求三角形F1PF2的周长和面积
设F1F2是双曲线x^2/4-y^2=1的两个焦点,P在双曲线上,当△F1PF2的面积为1时,向量PF1向量PF2等于多少
双曲线x^2/4-y^2/b^2=1两焦点F1F2,P为线上一点,|OP|
设F1F2为双曲线x^2/4-y^2/4=1的两个焦点,点P在双曲线上且满足∠F1PF2=90°,求三角形F1PF2的周长和面积...设F1F2为双曲线x^2/4-y^2/4=1的两个焦点,点P在双曲线上且满足∠F1PF2=90°,求三角形F1PF2的周长和面
设F1F2为双曲线x^2/4-y^2=1的两个焦点,点p在双曲线上,且满足向量PF2*向量PF2=0,则三角形F1PF2的面积为已知双曲线C:y^2/9-x^2/8=1抛物线已曲线C的下顶点为焦点,以原点为顶点,求抛物线的标准方程
求设P为双曲线X^2-Y^2上的一点,F1F2是双曲线的两个焦点,若|PF1|:|PF2|=3:2,则三角形PF1F2的面积为...求设P为双曲线X^2-Y^2上的一点,F1F2是双曲线的两个焦点,若|PF1|:|PF2|=3:2,则三角形PF1F2的面积为
设F1、F2分别为双曲线x^2/a^2-y^2/b^2=1的左右焦点,若在双曲线右支上存在点P,满足PF2=F1F2,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为A.3x±4y=0B.3x±5y=0C.4x±3y=0D.5x±4y=0勾股怎
设P是双曲线X2/4-Y2/b2=1上一点,双曲线的一条渐近线方程为3X-2Y=0,F1F2分别是双曲线的左右焦点,若 IPF1I =3,则点p到双曲线右准线的距离是
设f1f2和f2为双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的两焦点,若f1、f2、p(0,2b)是正三角形的三个顶点,则双曲线离心率是?
设F1f2为双曲线X平方/2-4平方/y=1.的两个焦点,点P在双曲线上且满足角F1pf2=90度,则三角形F1pf2的面积是
双曲线渐近线方程问题设F1,F2分别为双曲线x^2/a^2-y^2/b^2=1的左右焦点若在双曲线右支上存在点P满足PF2=F1F2且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为
设F1F2是双曲线x^2/a^2 - y^2/b^2 = 1.的左右焦点,点P在双曲线上,若向量PF1点乘向量PF2=0,且他们的模之积为2ac,则双曲线的离心率是?A(1+根号5)/2 B(1+根号3)/2 C.2 D(1+根号2)/2 设F1F2是双曲线x^2/a^2
双曲线x^2/4+y^2/b^2=1(b∈n)的两个焦点F1,F2,P为双曲线上的一点,|PF1|,|F1F2|,|PF2|成等比数列,求次双曲线的方程
双曲线(x^2)/4-(y^2)/(b^2)=1(b∈N*)的两个焦点F1、F2,P为双曲线上一点,/OP/<5,/PF1/、/F1F2/、/PF2/成等比数列,求此双曲线的方程
一道双曲线题,急,设F1 F2分别为双曲线(x^2)/(a^2)-(y^2)/(b^2)=1的左右焦点,若在双曲线右支上存在点P,满足PF1=F1F2且F2到直线PF1的距离等于双曲线的实轴长,求该双曲线的渐近线方程