设P是一个数集,且至少含有两个数,若任意a,b∈P,都有a+b,ab,a/b∈P(除数b≠0),则称P是一个数域.请问……请问数集 F={a+b√2|a,b∈Q} 为什么是数域?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 14:22:37
设P是一个数集,且至少含有两个数,若任意a,b∈P,都有a+b,ab,a/b∈P(除数b≠0),则称P是一个数域.请问……请问数集 F={a+b√2|a,b∈Q} 为什么是数域?
xQJ@fk̞z˹! zE ETPUhBZ`bЏ 5 g3P<),޼7;넽:ۅ"=eswBDvUTY'"!F\<>IPq4G@̀672nG5j2٨MZF0FosAMD<r]/}Vs4giEsem%ЦQ]g6apd<0,t .&sР*RN6W$йh6av߰ V/*vQq LMW]hk2D1Vq-

设P是一个数集,且至少含有两个数,若任意a,b∈P,都有a+b,ab,a/b∈P(除数b≠0),则称P是一个数域.请问……请问数集 F={a+b√2|a,b∈Q} 为什么是数域?
设P是一个数集,且至少含有两个数,若任意a,b∈P,都有a+b,ab,a/b∈P(除数b≠0),则称P是一个数域.请问……
请问数集 F={a+b√2|a,b∈Q} 为什么是数域?

设P是一个数集,且至少含有两个数,若任意a,b∈P,都有a+b,ab,a/b∈P(除数b≠0),则称P是一个数域.请问……请问数集 F={a+b√2|a,b∈Q} 为什么是数域?
根据定义
若a=x1+y1√2
b=x2+y2√2
(x1,x2,y1,y2∈Q)
则a+b=(x1+x2)+(y1+y2)√2∈F
a*b=(x1x2+2y1y2)+(x1y2+x2y1)√2∈F
a/b=(x1+y1√2)(x2-y2√2)/(x2^2+2y2^2)
=(x1x2-2y1y2)/(x2^2+2y2^2) + (x2y1-x1y2)/(x2^2+2y2^2) * √2∈F
所以F是数域

设P是一个数集,且至少含有两个数,若对任意a,b∈R(除数b≠0),则称P是一个数域,那么数集F设P是一个数集,且至少含有两个数,若对任意a,b∈R,都有a+b,a-b,ab,a/b∈P(除数b≠0),则称P是一个数域, 设P是一个数集,且至少含有两个数,若对于任意a,b∈R都有a+b,a-b,ab,a/b ∈P(b≠0),则称P是一个数域.例如第四个正确么 为什么?设P是一个数集,且至少含有两个数,若对于任意a,b∈R都有a+b,a-b,ab,a/b 设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a-b、ab、a/b∈P(除数b≠0)则称P是一个数域.例如有理数集Q是数域.那么判断命题正确与否:数域必含有0,1两个数. 设P是一个数集,且至少含有两个数,若对任意a,b属于P,都有a+b,a-b,ab,a/b属于P(除数b不等于0),则P为一个数域,例如有理数集Q为数域.有下列命题:1、数域必含有0,1两个数.2、整数集是数域.3、数 设p是一个数集,且至少含有两个数,若对任意a,b属于p,都有a+b,a-b,ab,b分之a属于p,则称p是一个数域,例如有理数集是数域,有下列命题:①,数域必含0,1两个数②整数集是数域③若有理数集包含于m,则 1 设P是一个数集,且至少含有两个数,若任意a,b∈P,都有a+b,ab,a/b∈P(除数b不等于0)则P是一个数域,例如有理数集Q是数域.有下列命题:1 数域必为无限集2 存在无穷多个数域以上命题正确的是: 有关高一数学一道题中一个概念解释(元素与集合)设P是一个数集,且至少含有两个数,若对任意a,b属于P,都有a+b,ab,b分之a属于P(除数b不等于0),则称P是一个数域.例如有理数集Q是数域,数集F= 设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a-b、ab、 ∈P(除数b≠0)则称P是一个数域,例如有理数集Q是数域,有下列命题:若有理数集Q包含于M,则数集M必为数域;为什么不对 数域.集合题.设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a-b,ab、 ∈P(除数b≠0),则称P是一个数域.例如有理数集Q是数域;数集 也是数域.有下列命题:①整数集是数域; ② 设P是一个数集,且至少含有两个数,若对任意a,b∈P.都有a+b,a-b,ab,a/b(b≠0∈P,则称P是一个数域.1)若有理数集Q包含于M ,则数集M必为数域.为什么是错误的? 设P是一个数集,且至少含有两个数,若任意a,b∈P,都有a+b,ab,a/b∈P(除数b≠0),则称P是一个数域.请问……请问数集 F={a+b√2|a,b∈Q} 为什么是数域? 设P是一个数集,且至少含有两个数,若任意a,b∈P,都有a+b,ab,a/b∈P(除数b≠0),则称P是一个数域.请问……请问数集 F={a+b√2|a,b∈Q} 为什么是数域? 设P是一个数集,且至少含有两个数,若对任意a,b属于P,都有a+b,a-b,ab,a/b属于P(除数b不等于0),则P为一个数域,例如有理数集Q为数域.有以下命题:1.整数集是数域;2.有理数集Q包含于M,则数集M必 设P是一个数集,且至少含有两个数,若对任意a,b∈R,都有a+b,a-b,ab,a/b∈P(除数b≠0),则称P是一个数域,那么数集F={a+b根号2|a,b∈Q}为什么也是数域?我证不出. 设P是一个数集,且至少含有俩个数,若对任意a,b属于P,都有a+b,a-b,ab,a/b,属于P(除数b不等于0)则称P是一个数域,例如有理数Q是数域,有下列命题:A,数域必含有0,1俩个数 B,整数集是数域 C,若有理数集 设P是一个数集,且至少含有俩个数,若对任意a,b属于P,都有a+b,a-b,ab,a/b,属于P(除数b不等于0)则称P是一个数域,例如有理数Q是数域,有下列命题:A,数域必含有0,1俩个数 B,整数集是数域 C,若有理数集 设P是一个数集,且是少含有两个数,若对任意a,b∈P,都有a+b、a-b、ab、a/b∈P(除数b ≠0),则称P是一个数域,例如有理数集Q就是数域,有下列命题:1、数域必含有0,1这两个数;2、整数集是数域;3 设P是一个数集,且至少含有两个数,若任意a,b∈P,都有a+b,ab,a/b∈P(除数b≠0),则称P是一个数域例如有理数集Q是一个数域;数集F={a+b√2/a,b∈Q}也是数域有以下命题:①整数集是数域;②若有理