设x,y是矩阵A属于不同特征值的特征向量,证明ax+by(ab!=0)必不是A的特征向量

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 21:27:31
设x,y是矩阵A属于不同特征值的特征向量,证明ax+by(ab!=0)必不是A的特征向量
xN@_o%ł K£ZHkDDTcLl=­

设x,y是矩阵A属于不同特征值的特征向量,证明ax+by(ab!=0)必不是A的特征向量
设x,y是矩阵A属于不同特征值的特征向量,证明ax+by(ab!=0)必不是A的特征向量

设x,y是矩阵A属于不同特征值的特征向量,证明ax+by(ab!=0)必不是A的特征向量
证明:由已知设α1,α2是A的分别属于不同特征值λ1,λ2的特征向量
则 Aα1=λ1α1,Aα2=λ2α2,且λ1≠λ2.
假如aα1+bα2是A的属于特征向量λ的特征向量
则 A(aα1+bα2)=λ(aα1+bα2).
所以 λ1aα1+λ2bα2 = λ(aα1+bα2).
所以 (λ-λ1)aα1+(λ-λ2)bα2=0.
因为A的属于不同特征值的特征向量线性无关
所以 (λ-λ1)a=0,(λ-λ2)b=0
由于 ab≠0
所以 λ=λ1=λ2,与λ1≠λ2矛盾.

设x,y是矩阵A属于不同特征值的特征向量,证明ax+by(ab!=0)必不是A的特征向量 设A是n阶矩阵,a,b是A的两个不同的特征值,x,y是A的分别属于a,b的特征向量,证明:x+y不是A的特征向量 设α1,α2是矩阵A属于不同特征值的特征向量,证明α1+α2不是矩阵A的特征向量 设入1入2 是矩阵A的两个不同的特征值,a1a2 分别属于特征值入1入2 的特征向量,证明:a1a2 线性无关 设α是n阶对称矩阵A属于特征值λ的特征向量,求矩阵(P-1AP)T的属于特征值λ的特征向量 设ξ是矩阵A的属于特征值λ的一个特征向量,求证:ξ是A^n的属于特征值λ^n的一个特征向量 设λ1 λ2是n阶矩阵A的两个不同的特征值,X是矩阵A对应λ1的特征向量,证明λ1 λ2是A的转置的特征值如Y是A的转置对应λ2的特征向量,证明X与Y相交 设detA不等于0,λ是A的特征值,x是相应的特征向量,求伴随矩阵A的特征值和特征向量 设a,b为矩阵A的属于不同特征值的特征向量,则()A.Aa,Ab线性相关B.Aa,Ab线性无关 C.不存在k1不等于0,k2不等于0,是k1a+k2b是A的特征向量 特征值特征向量设α1,α2是3阶矩阵A的属于特征值λ1的两个线性无关的特征向量,为是么α1+α2是2A-E的特征向量? 设a是可逆矩阵A的一个特征值,则下列说法不正确的是(A)(aE-A)X=0的解都是A的属于a的特征向量(B)A的逆矩阵的一个特征值为-1/a(C)A*有一个特征值为|A|/a(D)A^2有一个特征值为a^2 设3阶实对称矩阵A的特征值为-1,1,1,-1对应的特征向量为(0,1,1)的转置,求A设属于特征值1的特征向量为(x1,x2,x3)^T由于实对称矩阵属于不同特征值的特征向量正交故(x1,x2,x3)^T与a1=(0,1,1)^T正交.即 设β1是n阶矩阵A属于特征值λ1的特征向量,β2,β3是A属于特征值λ2的特征向量,λ1≠λ2,证明:β1,β2,β3线性无关. 特征向量于特征值设y1,y2是3阶实对称矩阵A的两个特征值,a1=(2,2,3)^T,a2=(3,3,a)^T依次是A的属于y1,y2的特征向量,求a! 设α是矩阵A的属于特征值λ的特征向量,P为n阶可逆阵,则α也是矩阵()的特征向量A、P^-1AP B、A^2+3A C、A^2 D、P^TAP 怎么能只根据A是实对称矩阵还有特征值和一个特征向量就求出其他特征向量?已知B是实对称矩阵,特征值u1=-2,u2=u3=1,属于u1的特征向量是(1,-1,1)T设属于u2和u3的特征向量是(x1,x2,x3)T,则x1-x2+x3 A是3阶实对称矩阵,特征值分别为-1,1,1, -1的特征向量是(0 ,1, 1) ^T, 怎么1对应的特征向量设x=(x1,x2,x3),我只知道 不同特征值之间的特征向量正交 ,所以x2+x3=0然后怎么办.求详细点 设x=(1,0,-1)^T是三阶矩阵A的属于特征值λ=6的特征向量,则Ax=