2阶实对称矩阵A的特征值为1,2,对应特征向量分别为a1=(1,1)T,a2=(1,K)T,则K=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:50:57
xN@_e֛pXM@#%4
HF+8D4^̷o>#
8Aw4{2_KyrRMPL+9e1Q%q}UQK1<ل`&Yf5=->w^IN2TJ8Z"_{-cyͯ$'ERP
7NUgִҳ2&;#n 3|Ir&[tiDA?YڄSI[q#adqFWiYۯhC&/b
2阶实对称矩阵A的特征值为1,2,对应特征向量分别为a1=(1,1)T,a2=(1,K)T,则K=
2阶实对称矩阵A的特征值为1,2,对应特征向量分别为a1=(1,1)T,a2=(1,K)T,则K=
2阶实对称矩阵A的特征值为1,2,对应特征向量分别为a1=(1,1)T,a2=(1,K)T,则K=
很抱歉,
由于实施对称矩阵,且特征值不同,那么其特征向量必定正交(这是书上的定理),即a1*a2T=(1,1)*(1,k)T=1*1+1*k=0得到k=-1
解: 由已知 Aak=kak(k=1,2,3) 所以 1,2,3 是A的特征值且 a1,a2,a3 是A的分别属于特征值1,2,3的特征向量令 P=(a1,a2,a3), 则 P
实对称矩阵 特征值设A是3阶实对称矩阵 启特征值为1,1,-1,且对应的特征向量为a=(1,1,1)b=(2,2,1)求A=?
设3阶实对称阵A的特征值是1,2,3;矩阵A的对应与特征值1,2的特征向量分别为(-1,-1,1)T,(1,-2,-1)T.求矩阵A
已知3阶实对称矩阵A的3个特征值a1=0,a2=a3=2,且特征值0对应的特征向量为(1,0,-1)^T,求矩阵A
设三阶实对称矩阵A的特征值为1,1,-1且对应的特征值1的特征向量有(1,1,1),(2,2,1),求矩阵A
2阶实对称矩阵A的特征值为1,2,对应特征向量分别为a1=(1,1)T,a2=(1,K)T,则K=
线性代数中,三阶实对称矩阵A的三个特征值所对应的特征向量分别为 -1 -1 1 ,1 -2 -1求另一个特征值所对应的特征向量
设3阶对称矩阵A有特征值2,1,1,对应于2的特征向量为a1=(1;-2;2),求矩阵A
矩阵的特征值问题设三阶实对称矩阵的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A属于λ1的一个特征向量,记B=A5-4A3+E,其中E为三阶单位矩阵,求B的特征值和对应特征向量.求出特征值不知道怎么求特
设α为n阶对称矩阵A的对应于特征值λ的特征向量,求矩阵((P^-1)AP)^T对应于特征值λ的特征向量
已知三阶对称矩阵A的特征值为1,-2-3则|A-1|=
已知3阶实对称矩阵A的特征值为2,2,3,且2所对应的特征向量为[1,2,3]T和[-1,2,-1]T,则3所对应的特征向量是____,请说明理由
设3阶对称矩阵A的特征值分别是λ1=-53,λ,2=λ3=63,与特征值λ1=53对应的特征向量为P1=(-6,-6,3)T,求A设3阶对称矩阵A的特征值分别是λ1=-53,λ,2=λ3=63,与特征值λ1=53对应的特征向量为P1=(-6,-6,3)T,求矩阵A.
线性代数问题 已知三阶对称矩阵A的一个特征值为λ=2,对应的特征向量α=(1,2,-1),且A的主对角线上的元素全为0,求A.已知三阶对称矩阵A的一个特征值为λ=2,对应的特征向量α=(1,-1),且A的主对
3阶实对称矩阵A,B=A^5-4A^3+E 可以推出B也是实对称矩阵吗?A的特征值为1,2,-2 特征值1的特征向量(1,-1,1)
二阶矩阵A是实对称矩阵,特征值分别为1和2,当特征值取1时,特征向量为(1,2)T,求A.
1.一个特征向量不能属于不同的特征值.( )2. 阶方阵A与其转置矩阵 有完全相等的特征值.( )3.方阵A的属于不同特征值的特征向量线性无关.( )4.实对称矩阵A的属于不同特征值的特
设3阶对称矩阵A的特征值依次为1,-1,0,请教大大这题设3阶对称矩阵A的特征值依次为1,-1,0,对应于1,-1的特征向量依次为P1=122P2=21-2求矩阵A.
设6,3,3为实对称矩阵A的特征值,A的对应于3的特征向量为a1=(-1,0,1)T,a2=(1,2,1)T,求矩阵A