i是三角形abc内心,ac=2,bc=3,ab=4若向量ai=x向量ab+y向量ac,则x+y=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:01:49
i是三角形abc内心,ac=2,bc=3,ab=4若向量ai=x向量ab+y向量ac,则x+y=
i是三角形abc内心,ac=2,bc=3,ab=4若向量ai=x向量ab+y向量ac,则x+y=
i是三角形abc内心,ac=2,bc=3,ab=4若向量ai=x向量ab+y向量ac,则x+y=
你题目打得对吗?
ab+y向量ac 这句话有问题
i是三角形abc内心,则有,
|bc|*(向量Ai)+|ac|*(向量Bi)+|ab|*(向量Ci)=0,
3*(向量Ai)+2*(向量Bi)+4*(向量Ci)=0,
向量Ai=(-2/3)*[(向量Bi)+2(向量Ci)]
而,向量AB=向量Ai-向量Bi,
向量AC=向量Ai-向量Ci,
向量Ai=x*(向量AB)+y*(向量AC)
=x...
全部展开
i是三角形abc内心,则有,
|bc|*(向量Ai)+|ac|*(向量Bi)+|ab|*(向量Ci)=0,
3*(向量Ai)+2*(向量Bi)+4*(向量Ci)=0,
向量Ai=(-2/3)*[(向量Bi)+2(向量Ci)]
而,向量AB=向量Ai-向量Bi,
向量AC=向量Ai-向量Ci,
向量Ai=x*(向量AB)+y*(向量AC)
=x*(向量Ai-向量Bi)+y*(向量Ai-向量Ci)
=向量Ai*(x+y)-(x*向量Bi+y*向量Ci)
向量Ai*[1-(x+y)]=-(x*向量Bi+y*向量Ci),
而,向量Ai=(-2/3)*[(向量Bi)+2(向量Ci)],则有
(-2/3)*[(向量Bi)+2(向量Ci)]*[1-(x+y)]=-(x*向量Bi+y*向量Ci),
即有,
2*[1-(X+Y)]/3*[(向量Bi)+2(向量Ci)]=(x*向量Bi+y*向量Ci),
根据向量性质有,方程组为:
2*[1-(X+Y)]/3=X,
4*[1-(X+Y)]/3=Y,
即,
5X+2Y=2,
4X+7Y=4,
解方程,得
X=2/9,Y=4/9,
则x+y=2/9+4/9=2/3.
收起
设向量AD=p向量AB+q向量AC
∵B、D、C共线,
∴p+q=1,
根据三角形角的平分线定理,
CD∶DB=AC∶AB=1∶2,
∴CD=(1/3)BC=1,
又CI平分分∠ACB,
∴AI∶ID=AC∶CD=2∶1,
∴向量AI=(2/3)向量AD=(2/3)p向量AB+(2/3)p向量AC,
∴x+y=(2/3)(p+q)= 2/3.