求证O是平面上任意一点,I是⊿ABC内心的充要条件是:向量OI=[a(向量OA)+b(向量OB)+c(向量OC)]/(a+b+c).

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 16:34:26
求证O是平面上任意一点,I是⊿ABC内心的充要条件是:向量OI=[a(向量OA)+b(向量OB)+c(向量OC)]/(a+b+c).
xTN@c|@43d>B (ZAD.ԉ ͪ;ݷ9sq`9Y/G.mFT@l};A-œ(^aJNΘG$ox~ڻe您IւS"k0 TaS?Wnkrn>!n= 0+fxvXm߃%ǟFA]䂗Q[_+ѓᙴ^c寧ߜj3@l`JLv& l#s{ VqC쪌J-uo)'[r#KlHޣb ,=v˱2 fjg?n~aX\s*#T4lCYaZ!URczF&IÑ0P؟ΆrG<#{x

求证O是平面上任意一点,I是⊿ABC内心的充要条件是:向量OI=[a(向量OA)+b(向量OB)+c(向量OC)]/(a+b+c).
求证O是平面上任意一点,I是⊿ABC内心的充要条件是:向量OI=[a(向量OA)+b(向量OB)+c(向量OC)]/(a+b+c).

求证O是平面上任意一点,I是⊿ABC内心的充要条件是:向量OI=[a(向量OA)+b(向量OB)+c(向量OC)]/(a+b+c).
充分性:
已知aOA向量+bOB向量+cOC向量=0向量,
延长CO交AB于D,根据向量加法得:
OA=OD+DA,OB=OD+DB,代入已知得:
a(OD+DA)+b(OD+DB) +cOC=0,
因为OD与OC共线,所以可设OD=kOC,
上式可化为(ka+kb+c) OC+( aDA+bDB)=0向量,
向量DA与DB共线,向量OC与向量DA、DB不共线,
所以只能有:ka+kb+c=0,aDA+bDB=0向量,
由aDA+bDB=0向量可知:DA与DB的长度之比为b/a,
所以CD为∠ACB的平分线,同理可证其它的两条也是角平分线.
必要性:
已知O是三角形内心,
设BO与AC相交于E,CO与AB相交于F,
∵O是内心
∴b/a=AF/BF,c/a=AE/CE
过A作CO的平行线,与BO的延长线相交于N,过A作BO的平行线,与CO的延长线相交于M,
所以四边形OMAN是平行四边形
根据平行四边形法则,得
向量OA
=向量OM+向量ON
=(OM/CO)*向量CO+(ON/BO)*向量BO
=(AE/CE)*向量CO+(AF/BF)*向量BO
=(c/a)*向量CO+(b/a)*向量BO∴a*向量OA=b*向量BO+c*向量CO
∴a*向量OA+b*向量OB+c*向量OC=向量0

求证O是平面上任意一点,I是⊿ABC内心的充要条件是:向量OI=[a(向量OA)+b(向量OB)+c(向量OC)]/(a+b+c). 点O是平面ABC上任意一点,点O是⊿ABC内心的充要条件是什么?(向量表达) 并证明……(重点)请给予证明! 设AB是圆O的的直径.C是圆周上的任意一点,PA垂直平面ABC(P为圆O所在平面外一点)求证:平面PAC垂直平面PB设AB是圆O的的直径.C是圆周上的任意一点,PA垂直平面ABC,(P为圆O所在平面外一点)求证: 如图,己知PA垂直于平面ABC,AB是圆O的直径,C是圆O上任意一点,求证 平面PAC垂直于平面如图,己知PA垂直于平面ABC,AB是圆O的直径,C是圆O上任意一点,求证 平面PAC垂直于平面PBC 已知PA垂直于平面ABC,AB是圆O的直径,C是圆O上的任意一点,求证PC垂直于BC 若三角形ABC的三边a、b、c成等差数列且a小于b小于c,G为三角形ABC的重心I为三角形的内心,O是平面内任意一点求证:向量OI=(a*向量OA+b*向量OB+c*向量OC)/(a+b+c)那个是第二小问的证GI//AC 如图,AB是圆O的直径,C是圆周上一点,PA垂直于平面ABC,若AE垂直于PC,E为垂足,F是PB上任意一点,求证,平面AEF垂直于平面PBC P是三角形ABC所在平面&外的一点,P到三角形ABC三边的距离相等,O为P在平面&内的射影,且在三角形ABC内.求证:O是三角形ABC的内心. AB是圆O的直径,C是圆周上一点,PA垂直于平面ABC,AE垂直于PC,E为垂足,F为PB上任意一点求证平面AEF垂直于PBC AB是圆O的直径,C是圆周上异于A B的任意一点,PA垂直平面ABC.若AH垂直PC,垂足为H,求证AH垂直平面PBC 如图,圆O是三角形ABC的外接圆,点I是三角形ABC的内心如图,AB是圆o的直径,AM和BN是圆o的两条切线,E是圆o上一点,连接DE并延长交BN于C,且OD∥BE,OOF∥BN求证,DE是圆o的切线 内接圆o的三角形ABC是等边三角形 p为弧AB上的任意一点求证 PA=PB+PC ①如图,设AB是⊙O的直径,C是圆周上除A,B外的任意一点,PA⊥平面ABC,求证:平面PAC⊥平面PBC①的图②求证:在正方体ABCD-A1B1C1D1中,平面AA1C1C⊥平面BB1D1D AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上的任意一点,求证:BC⊥面PAC 已知:三角形ABC,O是三角形ABC内任意一点.求证:AB+AC大于OB+OC 如图,AB是⊙O的直径,点C是圆O上异于A,B的任意一点,直线PA垂直于圆O所在平面,PA=2AC,AD垂直于PC垂足为D,求证:求平面ABC与平面PBC所成角的正切 如图,BP平分∠ABC,O是BP上任意一点,圆O与AB相切,切点为D.求证:BC为圆O的切线 AB是圆O的直径,C是圆上异于A,B的任意一点,PA垂直平面ABC,AF垂直PC.求证:AF垂直面PBC