已知方程x^2+y^2+zkx+4y+3k+8=0表示一个圆则实数K的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 18:54:31
已知方程x^2+y^2+zkx+4y+3k+8=0表示一个圆则实数K的取值范围
xAN@ҥ-..0w0UƆ\h*F,nZhRkciX X/ÃWp(&qab2|3{òyJ ^(u}VF5}0Q[xOsO@q;?lˋ~U;"ula%:|[*aiI5t;vɍ1$uxxsyD&1yhf1Y*@$ś5׬TXfLX4:9+I~``1ˠčltc0?5ev"PRU'

已知方程x^2+y^2+zkx+4y+3k+8=0表示一个圆则实数K的取值范围
已知方程x^2+y^2+zkx+4y+3k+8=0表示一个圆
则实数K的取值范围

已知方程x^2+y^2+zkx+4y+3k+8=0表示一个圆则实数K的取值范围
试试化成(x-m)^2+(y-n)^2=h
h>0即可保证方程是个圆.

将原式转化为:(x+K)的平方+(y+2)的平方=K的平方+4-3K-8 即K的平方-3K-4需要大于零(因为左边大于零,则右边也大于零)得出:K<-1或K>4