定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.如果对于函数f(x)的所有上界中有一个最小的上界

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 23:00:09
定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.如果对于函数f(x)的所有上界中有一个最小的上界
xSQO`+Eү--e/շ-!L\FN-JdTL4Xc\_-i۽{nOqIC[1w?eW:I6LbM^@BsQ_Vw=f]onf:^Zi VPk`3:,7;(Ng d:eh?I>=! ?YVhȰIGv& f{d@7>K>|Rdd ؕZR:ۣEdª}y7+^3ח̍zbaZCQ"L=Jd9nffn qhSd^v]9">u*)}(/KvDNYixǟ𴜈8AUxvXr@mԖeDCR"y'~p 1 ggOi: Gl,ᔥHÑ?I!}# $Yp!Υ #%<<В JbSb8( $J|P`% /."te͹ـ1Hy@/t/y榱ytϩ=jK8kyf_~3

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.如果对于函数f(x)的所有上界中有一个最小的上界
定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.如果对于函数f(x)的所有上界中有一个最小的上界,就称其为函数f(x)的上确界.已知函数f(x)=1+a•(
12)x+(
14)x,g(x)=
1-m•2x1+m•2x.
(1)当a=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围;
(3)若m>0,求函数g(x)在[0,1]上的上确界T(m).

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.如果对于函数f(x)的所有上界中有一个最小的上界
楼上说的很正确,

希望有帮助。 

答案全写在图上了。


 

楼上说的很正确,你可以采纳

定义在D上的函数f(x),如果满足:对任意x∈D定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界(1)判断函 定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的一个上界,已知函数.剩下题目看下图: 定义在D上的函数F(X),如果满足对任意X属于D,存在常数M大于0,都有定义在D上的函数F(X),如果满足对任意X属于D,存在常数M大于0,都有F(X)的绝对值小于等于M成立,则称F(X)是D上的有界函数,其中M是F 定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=(1-m*2^x)/(1+m*2^2),若函数f(x)在[0,1]上是以3 关于函数有界性定义的疑问数学上说如果对于变量x所考虑的范围(用D表示)内,存在一个正数M,使在D上的函数值f(x)都满足 │f(x)│≤M ,则称函数y=f(x)在D上有界,亦称f(x)在D上是有界函数.那么对一 f(x)是定义在(0,+∞)上的减函数满足f(xy)=f(x)+f(y),如果f(x)+f(2.5-x) 定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有│f(x)│≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.若函数f(x)=1+a*(1/2)∧x+(1/4)∧x在[0,+∞)上是 定义在D上的函数F(X),如果满足对任意X属于D,存在常数M大于0,都有F(X)的绝对值小于等于M成立,则称F(X)是D上的有界函数,其中M是F(X)的上界,已知函数=x+1-ax2,求函数f(x)在(-∞,0)上的值域,并 定义在D上的函数F(X),如果满足对任意X属于D,存在常数M大于0,都有F(X)的绝对值小于等于M成立,则称F(X)是D上的有界函数,其中M是F(X)的上界,已知函数=x+1-ax2,求函数f(x)在(-∞,0)上的值域,并 定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.(1)证明:设M>0,N>0,若f(x),g(x)在D上分别以M,N 定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.如果对于函数f(x)的所有上界中有一个最小的上界 定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.如果对于函数f(x)的所有上界中有一个最小的上界 定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=(1-m•2^x)/(1+m•2^x).(1)当m=1时, 我们知道,如果定义在某区间上的函数f(x)满足对该区间上的任意两个数x1、x2,总有不等式[f(x1)+f(x2)]/2≤f[(x1+x2)/2]成立,则称函数f(x)为该区间上的向上凸函数(简称上凸).类比上述定义,对于 定义在(-1,1)上的函数f(x)满足:对任意x、y∈(-1,1)都有f(x)=f(y)=f[(x+y)/(1+xy)]1.求证:函数f(x)是奇函数2.如果当x∈(-1,0)时,有f(x)>0,求证:f(x)在(-1,1)上是单调递减区间 设函数y=f(x)是定义在R上的减函数,并且满足f(xy)=f(x)+f(y),f(3分之1)=1,求f(1)?如果f(x)+f(2-x) 设函数f(x)是定义在R﹢上的减函数,并满足f(xy)=f(x)+f(y),f(1/3)=1.如果f(x)+f(2-x) 已知定义在实数上的函数f(x)满足对任意函数,都有f(x1*x2)=f(x1)+f(x2)成立,确定f(x)奇偶性?