已知β1β2是非齐次线性方程组AX=B的两个不同解,其导出组AX=0的基础解系只有一个向量.需要求方程组AX=B的通解,是填空题.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:30:04
已知β1β2是非齐次线性方程组AX=B的两个不同解,其导出组AX=0的基础解系只有一个向量.需要求方程组AX=B的通解,是填空题.
x){}Km2<ٌ/{w³5 ai;~1';<ٱɎާz^,_u{(1*y: @w?_lN @MO'L|ޯrNËe66aD.\|宗f$݅`KIs~PS6Bt.Й @5 @ ECik{d7V5#+;';v PVր <;PP"`4

已知β1β2是非齐次线性方程组AX=B的两个不同解,其导出组AX=0的基础解系只有一个向量.需要求方程组AX=B的通解,是填空题.
已知β1β2是非齐次线性方程组AX=B的两个不同解,其导出组AX=0的基础解系只有一个向量.
需要求方程组AX=B的通解,是填空题.

已知β1β2是非齐次线性方程组AX=B的两个不同解,其导出组AX=0的基础解系只有一个向量.需要求方程组AX=B的通解,是填空题.
由已知 β1-β2 是AX=0 的非零解
而 导出组AX=0的基础解系只有一个向量
所以 β1-β2 是AX=0 的基础解系
所以 方程组的通解为 β1 + k(β1-β2).

已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2,是对应齐次线性方程组Ax=0的基础解系已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2,是对应齐次线性方程组Ax=0的基础解系,k 已知β1β2是非齐次线性方程组AX=B的两个不同解,其导出组AX=0的基础解系只有一个向量.需要求方程组AX=B的通解,是填空题. η1,η2是非齐次线性方程组AX=b的解求AX=0的解 线性代数,一道填空题.设α是齐次线性方程组Ax=0的解,而β是非齐次线性方程组Ax=b的解,则A(3α+2β)=_______.该题应该如何做? 设α_1,α_2,α_3,⋯,α_m是其次线性方程组Ax=0的基础解系,β是非齐次线性方程组Ax=b设,〖α_(1,) α〗_2,α_3,⋯,α_m是其次线性方程组Ax=0的基础解系,β是非齐次线性方程组Ax=b(b≠0)的一个特解 设α是非齐次线性方程组AX = B的解向量,β是AX = o 的解向量,则 1/2 (α + β )是方程组?的解向l量 设η1,η2是非齐次线性方程组AX=b的解,又已知k1η1+k2η2也是AX=b的解,则k1+k2=? 设n1、n2是非齐次线性方程组AX=b的解,又已知k1n1+k2n2也是AX=b的解,则k1+k2=?数字1、2都是下标 已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2,是对应齐次线性方程组Ax=0的基础解系有ABCD四个选项,B:k1α1+k2(β1—β2)+(β1+β2)/2 为什么不对?k1α1+k2(α1+α2)+(β1+β2) 设β是非齐次线性方程组Ax=b的一个解,α1,α2,...,αn-r是对应的齐次线性方程组Ax=0的基础解系,证明β,α1,α2,...,αn-r线性无关.(线性代数, 金融学 数学 线性代数证明题金融数学线代:已知a1,a2是齐次线性方程组AX=0的两个线性无关解,b是非齐次线性方程组AX=B的解,证明:b,b+a1,b+a2线性无关 设α1,α2是非齐次线性方程组AX=B的解,β是对应的齐次方程组AX=0的解,则AX=B必有一个解是( )A、α1+α2β B、α1-α2 C、β+α1+α2 D、β+1/2α1+1/2α2 几个线性方程组问题:1:已知β1,β2是非齐次线性方程组AX=b的两个不同解,α1,α2是AX=0的基础解系,K1,K2为任意常数,为什么通解为K1α1+K2(β1-β2)+1/2(β1+β2)?2:yaos要使α1=(1,0,2)T,α2=(0,1,-1)T都 线代证明,设β是非齐次线性方程组Ax=b的解向量,α1,α2.……αn-r是对应齐次方程组的一个解的基础设β是非齐次线性方程组Ax=b的解向量,α1,α2.……αn-r是对应齐次方程组的一个解的基础解析,则 设A是n阶方阵,则齐次线性方程组AX=0有非零解的充要条件是非齐次线性方程组 AX=b有无穷多解 这句话对吗? 设X与Y都是非齐次线性方程组AX=b的解,则2X-3Y必为齐次线性方程组AX=0的解,判断对错 7.已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是其导出组Ax=0的一个基础解系,C1,C2为任意常数,则方程组Ax=b的通解可以表为( )A.1/2 (β1+β2)+C1α1+C2(α1+α2) B.1/2 (β1-β2)+C1α1+C2(α1+α α0是非齐次线性方程组AX=β的一个解,α1,α2,...αr是AX=0的基础解系.证明α0,α1...αr线性无关.