lim(x→0){1/x-cotx} =
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 10:47:35
xJ@_
OfDn=d~Ѷ"u']E"&A$hbX<
n v҄(FׇeݎrU/e3wĄYv?uc"feY03Sdy[3#/}Ouf$UNB{8X3Lhb.P1D(HsDU 8t$(R"MPBAS.4gEb!a XdF8%硖B$Ɓ@$b'K]OZw[[Ϛ8[;hdws~^oĠy]{x
nѦѳ
lim(x→0){1/x-cotx} =
lim(x→0){1/x-cotx} =
lim(x→0){1/x-cotx} =
看图
加分啊
lim(x→0){1/x-cotx} =lim(x→0){(sinx-xcosx)/(x*sinx)} =lim(x→0){(sinx-xcosx)/(x*x)}=罗必达lim(x→0){(cosx-cosx+xsinx)/(2*x)}=lim(x→0){(sinx)/(2)}=0
lim(x→0){1/x-cotx} =
lim(x→0) (1+tanx)^cotx
lim(x→0)cotx[1/sinx-1/x]
lim (x→0) [tan( π/4 - x )]^(cotx)=?
lim(x→0)[1/x^2-(cotx)^2]
求极限:x→0 lim[(1+tanx)^cotx]
lim(1+3tanx)^cotx ,x→0的极限
lim(x→0)(1+2/cotx)^(1/x)=?
lim(x趋向于0)(x*cotx-1)/(x^2)
lim趋于0((tanx-x)/(x-sinx))^(cotx-1/x)
lim(cotx-1/x) x趋向于0
lim(X趋于0)(COtX-1/X)
关于lim[x->0,cotx(1/sinx-1/x)中使用无穷小替换的问题lim[x->0,cotx(1/sinx-1/x)=lim[x->0,(cotx/sinx-cotx/x)=lim[x->0,1/sinxtanx]-lim[x->0,1/xtanx](用无穷小替换)=lim[x->0,1/x^2]-lim[x->0,1/x^2]=lim[x->0,1/x^2-1/x^2]=lim[x->0,0]=0 这
1.Lim xe^x/sinx的值x→02.Lim cotx-1/Inx的值x→0
用洛必达法则求lim(x→0+)cotx/lnx
求lim(x→0) ln(arcsinx)/cotx
lim /x→o^+ lnx/cotx
求lim(x趋向0)(1+sinx)^cotx的极限