已知直角梯形ABCD中,AD∥BC,∠B=90º,AB=8,AD=12,tanC=4/3,AM∥DC,E,F分别是线段AD、AM上的动点且∠FEM=∠AMB,设DE=x,MF=y求证AM=MD;y与x的函数关系式并写出自变量x的取值范围;若点E在边AD上移动时,ΔEFM

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 20:20:38
已知直角梯形ABCD中,AD∥BC,∠B=90º,AB=8,AD=12,tanC=4/3,AM∥DC,E,F分别是线段AD、AM上的动点且∠FEM=∠AMB,设DE=x,MF=y求证AM=MD;y与x的函数关系式并写出自变量x的取值范围;若点E在边AD上移动时,ΔEFM
xTn71HUUX49҆Z_~@`YwX#<:\1`M˩DG"|:ԌWrFS,]syνdyqA}3|vO'1ƒ۷+dnﲷoJylZ,r -Lv0X^!8[U^8c_ @ÕLGHIDG#.KC&oWKAiٱzx+ޫDW6A_ղWөߍQJhtƸpӖpdǟ2{S(Ao߄`ۢZc|֑jFvzW^$W,.6o]^6lֈvTZU힩,u#c1P_rY,^u6nR/G$b㜆sD*I0$tܺ`{Cl'Uq.Rm²[^jf9Wf##`̇#z\ fGh3#EEE@:*F#>ج*Lb"07ªJj?74w14[Qe^2D,P8T3$ItiL%1\Od c=?.鹏W☨Et+ u 6n)-KE0.97j*BgRXT֭0Тœ>%Z&ӥ%<Is+uVɲ)?nhSr;w?

已知直角梯形ABCD中,AD∥BC,∠B=90º,AB=8,AD=12,tanC=4/3,AM∥DC,E,F分别是线段AD、AM上的动点且∠FEM=∠AMB,设DE=x,MF=y求证AM=MD;y与x的函数关系式并写出自变量x的取值范围;若点E在边AD上移动时,ΔEFM
已知直角梯形ABCD中,AD∥BC,∠B=90º,AB=8,AD=12,tanC=4/3,AM∥DC,E,F分别是线段AD、
AM上的动点且∠FEM=∠AMB,设DE=x,MF=y求证AM=MD;y与x的函数关系式并写出自变量x的取值范围;若点E在边AD上移动时,ΔEFM为等腰三角形、求x的值;若以BM为半径的⊙M和以ED为半径的⊙E相切,求ΔEMD的面积

已知直角梯形ABCD中,AD∥BC,∠B=90º,AB=8,AD=12,tanC=4/3,AM∥DC,E,F分别是线段AD、AM上的动点且∠FEM=∠AMB,设DE=x,MF=y求证AM=MD;y与x的函数关系式并写出自变量x的取值范围;若点E在边AD上移动时,ΔEFM
(1)作DH⊥BC于H,则四边形ABHD是矩形,BH=AD=12,DH=AB=8,
由tanC= 得,DH/CH=4/3,CH=6,所以,CD=10.
由AM∥DC知,四边形AMCD是平行四边形,AM=CD=10,所以,MH=6,由勾股定理可得,DM=10,
所以,AM=DM.
(2)∵AM=DM,∴∠MDA=∠DAM
∵AD∥BC,∴∠MAD=∠AMB.∵∠FEM=∠AMB,∴∠FEM=∠MAD
∵∠FEM+∠DEM=∠MAD+∠AFE ∴∠DEM=∠AFE,
∴⊿AEF∽⊿DME,∴AE:DM=AF:DE,即(12-x):10=(10-y):x
∴ y=0.1x2-1.2x+10.
(3)若FM=EM时,x=0;
若FM=FE时,则∠FEM=∠FME=∠MAE,于是,AE=EM,作EG⊥AM于G,则G是AM的中点,
所以AG=2.5.不难发现,Rt⊿ABM∽Rt⊿EGA,所以,BM:GA=AM:AE,
即6:2.5=10:(12-x),所以x=47/6;
若EM=FE时,⊿AEF≌⊿DME,AE=DM,即12-x=10,x=2.
综上所述,当ΔEFM为等腰三角形时,x=0,2,47/6.
(4)作MN⊥AD于N,四边形ABMN是矩形,MN=AB=8,NE=6-x
以BM为半径的⊙M和以ED为半径的⊙E相切时,DM=6+x,
在Rt⊿MNE中,ME2=MN2+NE2,(6+x)2=64+(6-x)2
x=8/3,SΔEMD=1/2 • 8/3×8=32/3 .