若x,y,z属于R,a,b,c属于R+,求证:[(b+c)/a]x^2+[(c+a)/b]y^2+[(a+b)/c]z^2>=2(xy+yz+zx)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 21:29:06
若x,y,z属于R,a,b,c属于R+,求证:[(b+c)/a]x^2+[(c+a)/b]y^2+[(a+b)/c]z^2>=2(xy+yz+zx)
若x,y,z属于R,a,b,c属于R+,求证:[(b+c)/a]x^2+[(c+a)/b]y^2+[(a+b)/c]z^2>=2(xy+yz+zx)
若x,y,z属于R,a,b,c属于R+,求证:[(b+c)/a]x^2+[(c+a)/b]y^2+[(a+b)/c]z^2>=2(xy+yz+zx)
[(b+c)/a]x^2+[(c+a)/b]y^2+[(a+b)/c]z^2
=(b/a)x^2+(a/b)y^2+(c/a)x^2+(a/c)z^2+(c/b)y^2+(b/c)z^2
=[(b/a)x^2+(a/b)y^2-2xy]+[(c/a)x^2+(a/c)z^2-2xz]+[(c/b)y^2+(b/c)z^2-2yz]
=[(b/a)x^2+(a/b)y^2-2(sqrt(b)x/sqrt(a))(sqrt(a)y/sqrt(b))]
+[(c/a)x^2+(a/c)z^2-2(sqrt(c)x/sqrt(a))(sqrt(a)z/sqrt(c)]
+[(c/b)y^2+(b/c)z^2-2(sqrt(c)y/sqrt(b))(sqrt(b)z/sqrt(c))]
=[(sqrt(b)x/sqrt(a)-(sqrt(a)y/sqrt(b)]^2
+[(sqrt(c)x/sqrt(a)-(sqrt(c)z/sqrt(a)]^2
+[(sqrt(c)y/sqrt(a)-(sqrt(a)z/sqrt(c)]^2
≥0
证:b/ax²+a/by²≥2√(x²y²)=2|xy|≥2xy
同理c/ax²+a/cz²≥2zx,c/by²+b/cz²≥2yz
上三式相加,即为所证。
[(b+c)/a]x^2+[(c+a)/b]y^2+[(a+b)/c]z^2
=(b/a)x^2+(a/b)y^2+(c/a)x^2+(a/c)z^2+(c/b)y^2+(b/c)z^2
=[(b/a)x^2+(a/b)y^2-2xy]+[(c/a)x^2+(a/c)z^2-2xz]+[(c/b)y^2+(b/c)z^2-2yz]
=[(b/a)x^2+(a/b)y^2-2...
全部展开
[(b+c)/a]x^2+[(c+a)/b]y^2+[(a+b)/c]z^2
=(b/a)x^2+(a/b)y^2+(c/a)x^2+(a/c)z^2+(c/b)y^2+(b/c)z^2
=[(b/a)x^2+(a/b)y^2-2xy]+[(c/a)x^2+(a/c)z^2-2xz]+[(c/b)y^2+(b/c)z^2-2yz]
=[(b/a)x^2+(a/b)y^2-2(sqrt(b)x/sqrt(a))(sqrt(a)y/sqrt(b))]
+[(c/a)x^2+(a/c)z^2-2(sqrt(c)x/sqrt(a))(sqrt(a)z/sqrt(c)]
+[(c/b)y^2+(b/c)z^2-2(sqrt(c)y/sqrt(b))(sqrt(b)z/sqrt(c))]
=[(sqrt(b)x/sqrt(a)-(sqrt(a)y/sqrt(b)]^2
+[(sqrt(c)x/sqrt(a)-(sqrt(c)z/sqrt(a)]^2
+[(sqrt(c)y/sqrt(a)-(sqrt(a)z/sqrt(c)]^2
≥0
证:b/ax2+a/by2≥2√(x2y2)=2|xy|≥2xy
同理c/ax2+a/cz2≥2zx,c/by2+b/cz2≥2yz
上三式相加,即为所证。
收起