已知sin(x+π/4)=3/5,sin(x-π/4)=4/5 ,则tanx=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 21:17:44
已知sin(x+π/4)=3/5,sin(x-π/4)=4/5 ,则tanx=
x){}K34*7hӎ%y6IE$/!Ϧk3 DӈCh=ٱw

已知sin(x+π/4)=3/5,sin(x-π/4)=4/5 ,则tanx=
已知sin(x+π/4)=3/5,sin(x-π/4)=4/5 ,则tanx=

已知sin(x+π/4)=3/5,sin(x-π/4)=4/5 ,则tanx=
答:
sin(x+π/4)=3/5
sin(x-π/4)=4/5
两式相加得:
2sinxcos(π/4)=7/5
同理,两式相减得:
2cosxsin(π/4)=-1/5
上两式相除得:
tanx=-7