设实数x,y,满足y+x^2=0,0<a<1,求证loga(a^x+a^y)<1/8+loga2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:33:33
设实数x,y,满足y+x^2=0,0<a<1,求证loga(a^x+a^y)<1/8+loga2
x){nuMPSl6WjW3' umlz1'?=Q#1B;1R$o 3I*ҧAv6TtӣP P J ]Ffɣ%@YY-4<]i[$6yv {

设实数x,y,满足y+x^2=0,0<a<1,求证loga(a^x+a^y)<1/8+loga2
设实数x,y,满足y+x^2=0,0<a<1,求证loga(a^x+a^y)<1/8+loga2

设实数x,y,满足y+x^2=0,0<a<1,求证loga(a^x+a^y)<1/8+loga2
∵y+x^2=0
∴x+y=x-x^2=-(x-2)^2+1/4≤1/4
∴x+y的最大值=1/4
∵0