向量组与秩设向量组(Ⅰ)α1,α2,……αs; (Ⅱ)β1,β2,……βt的秩分别为r1和r2, 若(Ⅰ)中每一个向量均可由 (Ⅱ)线性表示,则r1和r2的关系是,求详细解释,谢谢
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 03:21:03
xݑ]j@ǯcA_|1=@*jkZ,]jڊ|
r+ʿ|Ӧop=e5ydX':
向量组与秩设向量组(Ⅰ)α1,α2,……αs; (Ⅱ)β1,β2,……βt的秩分别为r1和r2, 若(Ⅰ)中每一个向量均可由 (Ⅱ)线性表示,则r1和r2的关系是,求详细解释,谢谢
向量组与秩
设向量组(Ⅰ)α1,α2,……αs; (Ⅱ)β1,β2,……βt的秩分别为r1和r2, 若(Ⅰ)中每一个向量均可由 (Ⅱ)线性表示,则r1和r2的关系是,求详细解释,谢谢
向量组与秩设向量组(Ⅰ)α1,α2,……αs; (Ⅱ)β1,β2,……βt的秩分别为r1和r2, 若(Ⅰ)中每一个向量均可由 (Ⅱ)线性表示,则r1和r2的关系是,求详细解释,谢谢
r1小于等于r2,反证:如果r1比r2大的话,说明向量I里面至少有一个向量没有办法被II线性表示,这样就矛盾了,所以r1小于等于r2
向量组与秩设向量组(Ⅰ)α1,α2,……αs; (Ⅱ)β1,β2,……βt的秩分别为r1和r2, 若(Ⅰ)中每一个向量均可由 (Ⅱ)线性表示,则r1和r2的关系是,求详细解释,谢谢
N维向量空间向量的秩,证明题设A:α1,α2,……,αr,β,γ,…是若干个n维向量构成的向量组,证明α1,α2,……,αr是A的一个最大线性无关组的充要条件是下面条件都成立:(1)α1,α2,……αr与原向量
已知向量α,向量b不共线,(1)若向量AB=向量a+向量b,向量BC=2向量a+8向量b,向量CD=3(向量a-向量b),求求证:A,B,C三点共线;(2)求实数k,使k向量a+向量b与2向量a+k向量b共线。
设向量组Aα1α2α3与向量组Bβ1β2等价,则必有A向量组A线性相关B向量组B线性无关
已知向量a=(1,2),b=(cosα,sinα),设向量m=向量a+t向量b(t为实数),若向量a⊥向量b且向量a-向量b与向量m的夹角为π/4,则t=?
在线等…设向量A+向量B=(4,-2),向量A-向量2B=(1,-8),求向量2A与向量A-向量B夹角的正弦值
设向量组1:α1,α2,…αs 可由 向量组2β1,β2,β3,.βs线性表出问一下向量组1 线性无关,向量组1 线性相关时r和s的关系 以及向量组2线性无关,向量组2 线性相关时r和s的关系
已知平面向量α,向量β(向量α≠向量0,向量β,≠向量0)满足向量β的绝对值=1,且向量α与向量(β-α)已知平面向量α,向量β(向量α≠向量0,向量β,≠向量0)满足向量│β│=1,且向量α与向量
空间向量与平行关系!设向量U实施平面α的法向量,向量A是直线L的方向向量,判断直线L与α的位置关系.(1)向量U=(2,2,-1) 向量A=(-3,4,2)(2) 向量U=(0,2,-3) 向量A=(0,-8,12)设向量U,V分别是平面
线性代数的证明题,设向量β可由向量组α1,α2,…αS,线性表示,但不能由向量组(Ⅰ)α1,α2,…αS-1线性表示.记向量组(Ⅱ)α1,α2,…αS-1,β,试证向量αS不能由(Ⅰ)线性表示,但可以由(Ⅱ)线
线性代数中的r和s代表什么意思下面这句话中的r和s表示什么意思?设向量组(Ⅰ):α1,α2,…,αr可由(Ⅱ):β1,β2,…,βs线性表示.若r>s,则向量组(Ⅰ)线性相关.这个是向量组的秩里面的一
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为 ( )A.向量组α1,α2,…,αm可由向量组β1,β2,…,βm线性表示B.向量组β1,β2,…,βm可由向量组α1,α2,
平行四边形ABCD中,向量AC=(1,根号3),向量BD=(-2,0),设向量AC与向量AB的夹角为α,则α=平行四边形ABCD中,向量AC=(1,根号3),向量BD=(-2,0),设向量AC与向量AB的夹角为α,则α=
n维向量与矩阵乘法.一个矩阵与一组向量的乘法若向量组α1.αs,为n维列向量,设该向量组为B,A为mxn的矩阵,则BA=(Aα1,Aα2,.Aαs).BA的结果怎么的出来的?我脑子转不过来.
设a向量=(3/2,sinα),b向量=(cosα,1/3),且a向量平行于b向量,则锐角α为
设向量a=(3/2,sinα),向量b=(cosα,1/3),且向量a平行向量b,则锐角α=?
设向量组(1)可由向量组(2)线性表出,且秩r(1)=r(2),证明向量组(1)与(2)等价
已知向量a=2向量i+向量j,向量b=(cos^2α-m)×向量i+(cosα)×向量j.已知向量a=2向量i+向量j,向量b=(cos^2α-m)×向量i+(cosα)×向量j,向量i,j分别为与xy轴正方向同向的单位向量.(1)若向量a∥向