设n阶矩阵A的伴随矩阵为A*,证明:(提示:AA*=│A│In)(1)若│A│=0,则│A*│=0(2)│A*│=│A│ˆ(n-1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:46:50
设n阶矩阵A的伴随矩阵为A*,证明:(提示:AA*=│A│In)(1)若│A│=0,则│A*│=0(2)│A*│=│A│ˆ(n-1)
x){n_۞_rVZrV?d.G-x?]VZ49g=t^ 5y1445esCk<]CM"}6CFf{fO5=7H<;3QY

设n阶矩阵A的伴随矩阵为A*,证明:(提示:AA*=│A│In)(1)若│A│=0,则│A*│=0(2)│A*│=│A│ˆ(n-1)
设n阶矩阵A的伴随矩阵为A*,证明:(提示:AA*=│A│In)
(1)若│A│=0,则│A*│=0
(2)│A*│=│A│ˆ(n-1)

设n阶矩阵A的伴随矩阵为A*,证明:(提示:AA*=│A│In)(1)若│A│=0,则│A*│=0(2)│A*│=│A│ˆ(n-1)
证:
如果r(A)