线性代数:(设3阶实对称矩阵A的各行元素和均为3,)设3阶实对称矩阵A的各行元素和均为3,向量a1=(-1,2,-1)T,a2=(0,-1,1)T是AX=0的两个解,求A的特征值和特征向量我的疑问是:3是矩阵A的特征值我是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:25:25
xSn@~Iw!WW5h!P u?\
v"6^fg>
#SzC^3~~+|.^{}sg0"oW5iЩQ͑xu
6Hr"),IJ;<0*< ,yÁ½C0Vo۫f2aa"^?_ $JxwcWyOfw|4"J1_G
K,aǷ|[OCj|_T&6'"!cQɌ3:lZ
VU^y&Bz<IgR}%Qܑ㶩kt>/`sD%(!AIxAT$h|GQa7uݪ4帝|Wxk>dt@ݡSb{l:T$*YMB@\P#P,ܘut
z
线性代数:(设3阶实对称矩阵A的各行元素和均为3,)设3阶实对称矩阵A的各行元素和均为3,向量a1=(-1,2,-1)T,a2=(0,-1,1)T是AX=0的两个解,求A的特征值和特征向量我的疑问是:3是矩阵A的特征值我是
线性代数:(设3阶实对称矩阵A的各行元素和均为3,)
设3阶实对称矩阵A的各行元素和均为3,向量a1=(-1,2,-1)T,a2=(0,-1,1)T是AX=0的两个解,求A的特征值和特征向量
我的疑问是:3是矩阵A的特征值我是知道的,但是0是矩阵A的二重特征值是怎么得出来的哪?
线性代数:(设3阶实对称矩阵A的各行元素和均为3,)设3阶实对称矩阵A的各行元素和均为3,向量a1=(-1,2,-1)T,a2=(0,-1,1)T是AX=0的两个解,求A的特征值和特征向量我的疑问是:3是矩阵A的特征值我是
你注意,解有两个向量作为基,那么他的解在一个平面上.这意味着有两个自由变量n-r=2,换句话说,它的秩r=1.
3*3的矩阵,r=1,这说明有两个线性相关的行.必然,行列式为0.而det(A)=特征值之积.所以可以确定特征根为0,且为二重特征值.
判断特征值,注意两点:1.特征根的和=对角线元素的和(迹);
2.特征根的乘积=行列式
特征根的定义啊,AX=0X,而a1和a2正交,A又是对称阵,因此a1,a2和对应3的那个特征向量也正交,所以a1 a2就是对应0的两个特征向量
关于线性代数实对称矩阵的问题: 求助亲们解答! 3阶实对称矩阵A的各行元素之和均为3,能推出A(1关于线性代数实对称矩阵的问题:求助亲们解答!3阶实对称矩阵A的各行元素之和均为3,能推出A(1 1
线性代数:(设3阶实对称矩阵A的各行元素和均为3,)设3阶实对称矩阵A的各行元素和均为3,向量a1=(-1,2,-1)T,a2=(0,-1,1)T是AX=0的两个解,求A的特征值和特征向量我的疑问是:3是矩阵A的特征值我是
线性代数:(设3阶实对称矩阵A的各行元素和均为3)设3阶实对称矩阵A的各行元素和均为3,向量a1=(-1,2,-1)T,a2=(0,-1,1)T是AX=0的两个解,求A的特征值和特征向量我的疑问是:3是矩阵A的特征值我是
设A是3阶实对称矩阵,且各行元素之和都是5,则A必有特征向量?
求助:设A是3阶实对称矩阵,且各行元素之和都是5,则A必有特征向量?
设A是3阶实对称矩阵,且各行元素之和都是5,则A必有特征向量?
设A是秩为1的3阶实对称矩阵,且A的各行元素之和均为2,则A的特征值为?
一道大学线性代数题求详解设3阶实对称矩阵A的各行元素之和均为3,向量α1=[-1,2,-1]T和α2=[0,-1,1]T是齐次线性方程组AX=0的两个解.(1)求A的特征值和特征向量;(2)求一个正交矩阵Q和对角矩阵
线性代数中关于正定矩阵的一道题设A是n阶实对称矩阵,AB+B的转置乘A是正定矩阵,证明A可逆.
数学考研真题线性代数有一道题不懂怎么做错了,请大神看看为什么数学一06年21题设3阶是对称矩阵A的各行元素之和为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组AX=0的两个解.1求A的特征值和
线性代数,设A为3阶实对称矩阵,且满足R(A)=2,A2=A,求A的三个特征值.2,
线性代数,设A为3阶实对称矩阵,且满足R(A)=2,A2=A,求A的三个特征值.2,
大学线性代数.设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组A x=0的通解为?谢谢(*˘︶˘*)
已知3阶实对称矩阵A的各行元素之和为4,向量a(-4,2,2)^T是齐次线性方程组Ax=0的解,且矩阵A的对角元素之和为-1,则(1)矩阵A的特征值为?(2)属于特征值的特征向量分别为?(3)矩阵A等于?思路
已知3阶实对称矩阵A的各行元素之和为4,向量a(-4,2,2)^T是齐次线性方程组Ax=0的解,且矩阵A的对角元素之和为-1,则(1)矩阵A的特征值为?(2)属于特征值的特征向量分别为?(3)矩阵A等于?
线性代数 矩阵的相似变换设A是n阶实对称矩阵,满足A^2=A,且rankA=r(r
为什么3阶实对称矩阵的各行元素之和均为3,它的特征值就是3(求详解)
线性代数雨解析几何3.设A.C为阶正定矩阵, 设B是矩阵方程AZ+ZA=C的唯一解. 证明: (1) B 是对称矩阵; (2) B是正定矩阵.