一道大学线性代数题求详解设3阶实对称矩阵A的各行元素之和均为3,向量α1=[-1,2,-1]T和α2=[0,-1,1]T是齐次线性方程组AX=0的两个解.(1)求A的特征值和特征向量;(2)求一个正交矩阵Q和对角矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 15:27:44
一道大学线性代数题求详解设3阶实对称矩阵A的各行元素之和均为3,向量α1=[-1,2,-1]T和α2=[0,-1,1]T是齐次线性方程组AX=0的两个解.(1)求A的特征值和特征向量;(2)求一个正交矩阵Q和对角矩阵
xn@_e,_vH}KY U,!!6(H i5UBi@$vEvn}>Ŝ+p6>퓥[^Vupqn F5(P6M[)31%jtWsrʭ;9T03/d i

一道大学线性代数题求详解设3阶实对称矩阵A的各行元素之和均为3,向量α1=[-1,2,-1]T和α2=[0,-1,1]T是齐次线性方程组AX=0的两个解.(1)求A的特征值和特征向量;(2)求一个正交矩阵Q和对角矩阵
一道大学线性代数题求详解
设3阶实对称矩阵A的各行元素之和均为3,向量α1=[-1,2,-1]T和α2=[0,-1,1]T是齐次线性方程组AX=0的两个解.
(1)求A的特征值和特征向量;
(2)求一个正交矩阵Q和对角矩阵D,使QTAQ=D

一道大学线性代数题求详解设3阶实对称矩阵A的各行元素之和均为3,向量α1=[-1,2,-1]T和α2=[0,-1,1]T是齐次线性方程组AX=0的两个解.(1)求A的特征值和特征向量;(2)求一个正交矩阵Q和对角矩阵
(1) 3阶实对称矩阵A的各行元素之和均为3,故A有特征值3,对应的特征向量为a3=(1,1,1)T,
又向量α1=[-1,2,-1]T和α2=[0,-1,1]T是齐次线性方程组AX=0的两个解.
所以A有特征值0,对应的特征向量为,α1=[-1,2,-1]T和α2=[0,-1,1]T
(2)因为a1,a2,a3线性无关,故A可以对角化,将a1,a2,正交化,单位化,将a3单位化,
设得到的向量分别为b1,b2,b3,
令Q=(b1,b2,b3),则Q就是要求的正交矩阵,且
QTAQ=D=diag(0,0,3)

一道大学线性代数题求详解设3阶实对称矩阵A的各行元素之和均为3,向量α1=[-1,2,-1]T和α2=[0,-1,1]T是齐次线性方程组AX=0的两个解.(1)求A的特征值和特征向量;(2)求一个正交矩阵Q和对角矩阵 线性代数中关于正定矩阵的一道题设A是n阶实对称矩阵,AB+B的转置乘A是正定矩阵,证明A可逆. 一道线性代数矩阵的题,设A为3阶矩阵,|A|=1/2,求|(2A)^(-1)-5A*| 线性代数矩阵知识! 一道大学线性代数题对下列实对称矩阵,求一个正交矩阵Q和对角矩阵D,使Q^(-1 )AQ=DA=-2 2 2 2 1 4 2 4 1 线性代数,求详解,设A是n阶反对称矩阵(A^T=-A),如A可逆,必是偶数n必是偶数 线性代数题一道,求详解 线性代数,实对称矩阵 线性代数实对称矩阵, 矩阵题线性代数 求详解如图 一道大学线性代数可逆矩阵题设A为m阶可逆矩阵,B为n阶可逆矩阵,C为n x m 矩阵.证明:分块矩阵D=(O AB C)是可逆矩阵,并求D的逆矩阵及伴随矩阵 线性代数,设A为3阶实对称矩阵,且满足R(A)=2,A2=A,求A的三个特征值.2, 线性代数,设A为3阶实对称矩阵,且满足R(A)=2,A2=A,求A的三个特征值.2, 一道线性代数题,请会做的写下答案,100分求答案!设n阶矩阵A、B满足矩阵方程:A*A-AB+E=O其中E是n阶单位矩阵,O是n阶零矩阵,A是正交矩阵.试证:B是对称矩阵 一道线性代数题目设一个三阶对称矩阵A的特征值是6 3 3 其中6对应的特征向量a是[1,1,1]T 求A 大学线性代数,一道判断题.可逆矩阵A,B. 一道题 线性代数 求矩阵题. 线性代数逆矩阵一道题求指点 一道二次型线性代数题 设实对称矩阵A=(aij)n×n是正定矩阵,b1,b2…,bn是任意n个非零实数,证明:B=(aijbibj)n×n也是正定矩阵