线性代数中,如果矩阵A与一对角阵特征值相同,且二重特征值有两个线性无关的特征向量,能否说明A与对角阵相似?若矩阵B与对角阵特征值相等,但是二重特征值只有一个特征向量,是不是就说明B

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 16:32:02
线性代数中,如果矩阵A与一对角阵特征值相同,且二重特征值有两个线性无关的特征向量,能否说明A与对角阵相似?若矩阵B与对角阵特征值相等,但是二重特征值只有一个特征向量,是不是就说明B
xmJ@/4X"&z zX5![btM23-5EO,, wm%^7+y2C2J|.niQ6/LJ9lP1cQt>9 &<ރ:]UcNAqZf2ħ0W|p5 Lo|MGM)~iv_i-qpn6_?fmEf՝JTQ@O% ŭ-wm6

线性代数中,如果矩阵A与一对角阵特征值相同,且二重特征值有两个线性无关的特征向量,能否说明A与对角阵相似?若矩阵B与对角阵特征值相等,但是二重特征值只有一个特征向量,是不是就说明B
线性代数中,如果矩阵A与一对角阵特征值相同,且二重特征值有两个线性无关的特征向量,能否说明A与对角阵相似?若矩阵B与对角阵特征值相等,但是二重特征值只有一个特征向量,是不是就说明B与对角阵不相似?

线性代数中,如果矩阵A与一对角阵特征值相同,且二重特征值有两个线性无关的特征向量,能否说明A与对角阵相似?若矩阵B与对角阵特征值相等,但是二重特征值只有一个特征向量,是不是就说明B
如果矩阵A与一对角阵特征值相同,且二重特征值有两个线性无关的特征向量,能说明A与对角阵相似.若矩阵B与对角阵特征值相等,但是二重特征值只有一个特征向量,说明B与对角阵不相似,B只能化简为约当标准形了.

线性代数中,如果矩阵A与一对角阵特征值相同,且二重特征值有两个线性无关的特征向量,能否说明A与对角阵相似?若矩阵B与对角阵特征值相等,但是二重特征值只有一个特征向量,是不是就说明B 关于矩阵性质的证明两个方面.一.一个矩阵与对角阵相似,则该对角阵的对角线元素必为A的特征值二.一个矩阵如果与对角阵相似,则P不是别的,P矩阵就是A的特征值麻烦证明下吧 电脑不给力 坏 一矩阵的特征值组成的对角阵与该矩阵秩相同吗 线性代数矩阵与特征值问题! 线性代数选择题(见问题补充)设n阶矩阵A与对角矩阵相似,则()(A).A的n个特征值都是单值(B).A是可逆矩阵(C).A存在n个线性无关的特征向量(D).A一定为n阶实对称矩阵我选的是B.选B 矩阵A相似于对角阵对角阵 对角的元就是 矩阵A的特征值吗 线性代数 特征值与特征向量问题知特征值与特征向量,求此矩阵A?如何求? 线性代数,施密特正交化,课本有说,正交矩阵化实对称矩阵A为对角矩阵步骤:课本有说,正交矩阵化实对称矩阵A为对角矩阵步骤:1.求出A的全部特征值λ1,λ2,λ3,...,λn;2.对每个特征值λi,求出相 线性代数:矩阵与特征值.怎样快速求得A的特征值的? 在矩阵中,什么是对角阵?什么是方阵的特征值对角阵? 线性代数 特征值 特征向量 矩阵可相似对角化【A有n个线性无关的特征向量是A与对角矩阵相似的充分必要条件.A有n个不同的特征值是A与对角矩阵相似的充分条件.】那在我看来“A有n个线性无 线性代数矩阵的特征值的问题:如果矩阵A=B+C那么A的特征值是B的特征值加上C的特征值吗? 线性代数特征向量与对角矩阵题目 求线性代数矩阵的值已知3阶矩阵A的特征值为-1,1,2,设B=A^2+2A-E,求(1)矩阵A的行列式及A的秩.(2)矩阵B的特征值及与B相似的对角矩阵. AB均为实对称矩阵,且AB=BA,如果A有n个互异的特征值,证明,存在正交矩阵P使P'AP与P'BP均为对角阵 线性代数 矩阵求特征值 一个线性代数类的题目已知三阶矩阵的特征值为-1,1,2,设B=(A的平方+2A-E),(1)求矩阵A的行列式及A的秩;(2)求矩阵B的特征值及与B相似的对角矩阵 设A,B均为n阶矩阵,且AB=BA,证明: 1)如果A有n个不同的特征值,则B相似于对角矩阵;2)如果A,B都相似与对角矩阵,则存在非奇异矩阵P,使得P-1AP与P-1BP均为对角矩阵.