关于矩阵性质的证明两个方面.一.一个矩阵与对角阵相似,则该对角阵的对角线元素必为A的特征值二.一个矩阵如果与对角阵相似,则P不是别的,P矩阵就是A的特征值麻烦证明下吧 电脑不给力 坏

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:40:27
关于矩阵性质的证明两个方面.一.一个矩阵与对角阵相似,则该对角阵的对角线元素必为A的特征值二.一个矩阵如果与对角阵相似,则P不是别的,P矩阵就是A的特征值麻烦证明下吧 电脑不给力 坏
x[n@rc y^AT*^,nI\R$$iƵb7**UyљefJn`|%N.g_чDKsũGg35z3=&k/X@/آF=_ aM|3_ò>?okraH38f=$_{w 쬭xxmiQ搰a1&B:p}k@P؟z.XܡDWJ~O.]9 ߶7jqg\ύоjOUּ}+IAa^w_IKR(+#[|vB;O.!rKKnt3g']XmQ(2 $-hG[H!f GU2)(^2.d(Dk$)MFφ0T.n*S#Wdy6-;dcM*daA+jMe(E/7 `j

关于矩阵性质的证明两个方面.一.一个矩阵与对角阵相似,则该对角阵的对角线元素必为A的特征值二.一个矩阵如果与对角阵相似,则P不是别的,P矩阵就是A的特征值麻烦证明下吧 电脑不给力 坏
关于矩阵性质的证明
两个方面.
一.一个矩阵与对角阵相似,则该对角阵的对角线元素必为A的特征值
二.一个矩阵如果与对角阵相似,则P不是别的,P矩阵就是A的特征值
麻烦证明下吧 电脑不给力 坏了 手机提问的 麻烦说详细点 不好追问

关于矩阵性质的证明两个方面.一.一个矩阵与对角阵相似,则该对角阵的对角线元素必为A的特征值二.一个矩阵如果与对角阵相似,则P不是别的,P矩阵就是A的特征值麻烦证明下吧 电脑不给力 坏
二. 一个矩阵如果与对角阵相似,则P不是别的,P矩阵的列向量就是A的特征向量
证明: 设n阶方阵A与对角矩阵相似, 即有
P^-1AP = diag(λ1,λ2,...,λn)
其中P为可逆矩阵.
令 P = (α1,α2,...,αn)
则由 AP = Pdiag(λ1,λ2,...,λn) 得
A(α1,α2,...,αn) = (α1,α2,...,αn)diag(λ1,λ2,...,λn)
即有 (Aα1,Aα2,...,Aαn) = (λ1α1,λ2α2,...,λnαn)
所以 Aαi = λiαi, i=1,2,...,n
再由P可逆知 αi≠0, i=1,2,...,n
所以 λi 是A的特征值, αi是A的属于特征值λi的特征向量.
故(1),(2)得证.