求不定积分(x^3)*sqrt(a^2-x^2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 22:57:55
求不定积分(x^3)*sqrt(a^2-x^2)
x){Ɏާf=_iGFEVqaQFbnEMR>1 l6ź}  řy% v ) @^r~qBJ XӎOCLy?Ɏ]zԱZG3QǬD5eCs k]( 0JOG561(S].a ԱU&iko hkCe0mf q] S(TQ3Ba6tc0b"  MW!L,@lph; 1{g}

求不定积分(x^3)*sqrt(a^2-x^2)
求不定积分(x^3)*sqrt(a^2-x^2)

求不定积分(x^3)*sqrt(a^2-x^2)
设 x= asint => dx = acost dt
则原积分变为:∫(asint)^3√a²-a²sin²t × acost dt
=a^4∫(sint)^3cos²t dt
=a^4∫(sint)^3-(sint)^5 dt
∵ (sint)^3=(-1/4)sin3t+(3/4)sint
(sint)^5=(1/16)sin5t-(5/16)sin3t+(5/8)sint
∴a^4∫(sint)^3-(sint)^5 dt
=a^4∫(-1/16)sin5t+(1/16)sin3t+(1/8)sint dt
=a^4((-1/80)cos5t+(1/48)cos3t+(1/8)cost +C)