已知a,b,c是正数,a+b+c=1,证明(a+1/a)^2+(b+1/b)^2+(c+1/c)^2≥100/3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:28:22
x){}KutXlgS7$j'i'XlF=چqFI@Vd%Y:$S8;OUS QǬD-C}
$$0/K30B:O;f"4R'Zcbzj!
\Tb 2%/?ۭLu=<;P aS
已知a,b,c是正数,a+b+c=1,证明(a+1/a)^2+(b+1/b)^2+(c+1/c)^2≥100/3
已知a,b,c是正数,a+b+c=1,证明(a+1/a)^2+(b+1/b)^2+(c+1/c)^2≥100/3
已知a,b,c是正数,a+b+c=1,证明(a+1/a)^2+(b+1/b)^2+(c+1/c)^2≥100/3
(a+b+c)(1/a+1/b+1/c)≥[√a*1/(√a)+√b*1/(√b)+√c*1/(√c)]^2=(1+1+1)^2,则1/a+1/b+1/c≥9,[(a+1/a)^2+(b+1/b)^2+(c+1/c)^2](1+1+1) ≥(a+1/a+b+1/b+c+1/c)^2≥(1+9)^2,3除过去,(a+1/a)^2+(b+1/b)^2+(c+1/c)^2≥100/3,得证.
已知a,b,c是正数,求证a^2a*b^2b*c^2c>=a^(b+c)*b^(c+a)*c^(a+b)
已知a,b,c是正数,a+b+c=1,证明(a+1/a)^2+(b+1/b)^2+(c+1/c)^2≥100/3
已知a,b,c是正数,a+b+c=1,证明(a+1/a)^2+(b+1/b)^2+(c+1/c)^2≥100/3
已知a,b,c是正数,a+b+c=1,证明(a+1/a)^2+(b+1/b)^2+(c+1/c)^2≥100/3
已知a.b.c是三个正数,证明:a^2*b^2*c^2>=a^b+c*b^a+c*c^a+b
已知a+b+c=1(a,b,c为正数) 求证 (1/(b+c)-a)(1/(a+c)-b)(1/(a+b)-c)≥(7/6)^3
已知a,b,c是正数,且ab+bc+ca=1,求证:a+b+c>=根3
已知a,b,c是正数,且ab+bc+ac=1求证a+b+c大于等于根号3
已知正数a,b,c,a+2b+c=1,求1/a+1/b+1/c最小值
已知a,b,c是正数,求证:a^(2a)b^(2b)c^2(2c)≥a^(b+c)b^(c+a)c^(a+b)
已知a,b,c是正数,求证a^(2a)b^(2b)c^(2c)≥a^(b+c)b^(c+a)c^(a+b).
已知a,b,c是正数,求证:a^(2a)b^(2b)c^2(2c)≥a^(b+c)b^(c+a)c^(a+b)
已知a、b、c都是正数,且a+b+c=1,证明:1-2b(a+c)+b2
已知a,b,c是正数,求证 a^2(b)×b^(2b)×c^(2c)大于等于a^(a+b)×b^(a+c)×c^(a+b)
已知A,B,C都是负数,并且|X-A|+|Y-B|+|Z-C|=0,则XYZ是?A负数 B非负数 C正数 D非正数
已知a b c满足a*a+b*b+c*c-a*b-b*c-a*c=0【a b c是正数】则a b c之间怎样的大小关系
已知a,b,c是正数,且a+b+c=1,求证:(1/a -1)(1/b -1)(1/c -1)>=8.
已知实数a,b,c满足a+b+c=0,abc=4,那么1/a+1/b+1/c是正数,负数,还是0,还是可正可负?