已知m属于R,直线l::mx-(m^2+1)y=4m和圆c:x^2+Y^2-8x+4y+16=0,求直线l斜率的取值范围拜托各位了 3Q

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 21:48:44
已知m属于R,直线l::mx-(m^2+1)y=4m和圆c:x^2+Y^2-8x+4y+16=0,求直线l斜率的取值范围拜托各位了 3Q
xRMo@+{ld[ BRQ 8QfqHܸ IZ!7Pv:fIT@Jy7ͳs<|ʇc ޗyGUTkmLj%3k~S|WD*Jْ45Mk:knT;I;e>uЙG#ܸ{RB>?dpYh3sCDI,u㧁L(J"'\ =FZ]T]1uӰx?8W>:gF5rYx=ՇV_R{; ˺ <"" /? 8Tgu"!}Et&ֆ,! }A$!k`8׏5 >Vٷ#%wiy1i0ƀ}V h

已知m属于R,直线l::mx-(m^2+1)y=4m和圆c:x^2+Y^2-8x+4y+16=0,求直线l斜率的取值范围拜托各位了 3Q
已知m属于R,直线l::mx-(m^2+1)y=4m和圆c:x^2+Y^2-8x+4y+16=0,求直线l斜率的取值范围拜托各位了 3Q

已知m属于R,直线l::mx-(m^2+1)y=4m和圆c:x^2+Y^2-8x+4y+16=0,求直线l斜率的取值范围拜托各位了 3Q
将直线l化成点斜式:y= m/(m^2+1)x --4m/(m^2+1) (m^2+1显然不为0) 故L的斜率K=m/(m^2+1) 下面分类讨论:1、若m=0,则k=0 2、若m≠0 ,则k=m/(m^2+1)=1/[m+(1/m)] 单独考虑上式的分母 (m+1/m )显然是对勾函数,其值域为【--∞,--2】U【2,+∞】 再取其倒数,故值域为【--1/2,0)U(0,1/2】 综合1、2,故斜率的取值范围为【--1/2,1/2】 备注:这个题目应该不止一问吧?如果不懂可以继续追问,

求直线l斜率的取值范围已知M属于R,直线l:mx-(m^2 +1)y=4m 已知m∈R,直线l:mx-(m^2+1)y=4m,求直线l的斜率范围 已知m属于R,直线L:mx-(m2+1)y=4m,求直线L的斜率的取值范围. 已知m属于R,求直线l:mx-(m二次方+1)y=4m的斜率的取值范围 已知直线l过点A(1,2),B(m,3)(m属于R),求直线l的倾斜角 已知直线l:mx-2y+m+6=0(m属于R,则圆C:(x-1)^2+(y-1)^2=2上的各点到直线l的距离最大值是 已知m属于一切实数R,直线L:mX-(m2+1)Y=4m(注:m2表示m的平方),则直线L斜率的取值范围是什么, 数学一个疑惑已知m属于R,直线l:mx-(m2+1)y=4m和圆C:x2+y2-8x+4y+16=0求直线l斜率的取值范围解直线l的方程可化为y=m/(m2+1)x-4m/(m2+1),则直线l的斜率k=m/(m2+1).因为|m|≤1/2(m2+1),所以|k|=|m| 已知 m属于R,直线 l:mx-(m^+1)y=4m和圆C:x^2+y^2-8x+4y+16=0.(1)求直线l斜率的取值范围;(2)直线l能否将圆C分割成弧长的比值为1:2的两段圆弧?试说明理由. 已知m属于R,直线L,mx-(m^2+1)y=4m和圆C,x^2+y^2-8x+4y+16=01.求直线L斜率的取值范围2.直线L能否将圆C分割成弧长的比值为1/2的两段圆弧?为什么? 已知M属于R,直线L:MX-(M平方+1)Y=4M 和圆C X2+Y2-8X+4Y+16=01求直线L斜率取值范围2直线L能否将圆C分割弧长的比值为1/2的两段弧,为什么 已知圆c:x2+y2-4x-6y+9=0及直线l:2mx-3my+x-y-1=O(m属于R) 1.证明:不论m取何值时,直线L与圆相交2.求直线L与圆C截得的弦长最短的直线方程 已知m属于实数,直线L:mx一(m的平方+1)y=4m 求直线L的斜率取值范围.请说方法! 已知直线l经过A(2,1),B(1,m^2)两点(m属于R),求直线l的倾斜角的取值范围 已知m属于R,解关于x的不等式x平方-3mx+2m平方 已知m属于R,直线l:mx-(m2+1)y=4m和圆C:x2+y2-8x+4y+16=01 求直线l斜率的取值范围2 直线l 能否将圆C分割成弧长的比值为1/2的两段弧?为什么? 已知m属于R,直线l:mx-(m2+1)y=4m和圆C:x2+y2-8x+4y+16=01 求直线l斜率的取值范围2 直线l 能否将圆C分割成弧长的比值为1/2的两段弧?为什么? 已知m属于R,直线l::mx-(m^2+1)y=4m和圆c:x^2+Y^2-8x+4y+16=0,求直线l斜率的取值范围拜托各位了 3Q