过点(-4,0)作直线l与圆x2+y2+2x-4y-20=0交于A、B两点,如果AB=8,则直线l的方程为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 10:42:35
xPMK@;6K5
PKHi-J "U&)iџfӃz{oތ m27Xl̓a!ȍ͊+ƭqe%3c_&6i<ڊ@\2?a?
cClT%aGrJZ^KkC4DO"[7"W^O:x顸'
V ] ܮ90ڙe#
过点(-4,0)作直线l与圆x2+y2+2x-4y-20=0交于A、B两点,如果AB=8,则直线l的方程为
过点(-4,0)作直线l与圆x2+y2+2x-4y-20=0交于A、B两点,如果AB=8,则直线l的方程为
过点(-4,0)作直线l与圆x2+y2+2x-4y-20=0交于A、B两点,如果AB=8,则直线l的方程为
(x+1)^2+(y-2)^2=25
1、当x=-4,直线方程显然成立
2、设直线方程
kx-y-4=0
用数形结合的方法
根号(25-(8/2)^2)=|-k-2-4|/根号(1+k^2)=3
k不存在
所以直线l的方程为x=-4
过点(-4,0)作直线l与圆x2+y2+2x-4y-20=0交于A、B两点,如果AB=8,则直线l的方程为 ?
过点(-4,0)作直线l与圆x2+y2+2x-4y-20=0交于A、B两点,如果AB=8,则直线l的方程为
过点(-4,0)作直线1与圆x2+y2+2x-4y-20=0交于A、B两点,如果AB的绝对值=8,求直线l的方程.
过点A(4,0)作直线L与圆O:X2+Y2=4相交于M.N不同两点,求弦MN的中点P的轨迹方程
过点A(2,0)作直线L与圆O:X2+Y2=4相交于M.N不同两点,求弦MN的中点P的轨迹方程.
已知圆C:x2+y2-4x=0,l是过点P﹙3,0﹚的直线,求l与C的关系.
1.过点P(-2,0)作直线L交圆x2+y2=1于A、B两点.则|PA|·|PB|=?2.两圆x2+y2+2ax+2ay+2a2-1=0与x2+y2+2bx+2by+2b2-2=0的公共弦长的最大值?3.方程x2+4xy+4y2-x-2y-2=0表示的曲线是?
已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切,过点P已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切,过点P(-4,0)作斜率为的直线l,使得l和G交于A,B两点,和y轴交于点
L过x2+y2+4x-2y=0的圆心M,且与椭圆x2/9+y2/4=1交与点A、B,且A、B关于点M对称,求直线L的方程
设直线l过点(-2,0)且与圆x2+y2=1相切,则l的斜率是详细过程 快点
题目已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为 14的直线l,使得l和G交于A,B两点,和y轴交于点
圆与直线的距离已知0P(0,5)及圆X2+Y2+4X-12Y+24=0,若直线L过点P被圆截的长4√3求L
数学直线与方程设直线l过点(-2.0)且与圆x2+y2=1相切,则l的斜率是?
过点a(1,4)的直线l与圆x2+y2+4x-6y+12=0有公共点,则直线的斜率k的取值范围
如图,直线y=kx+1与y轴交于点F,与抛物线y=1/4x2交于M(x1,y1)和N(x2,y2)两点,且x1乘以x2=-4(x1<0,x2>0)1,求F坐标2,分别过M,N作直线L:y=-1的垂线分别是M1和N1,l与y轴的交点是F1,判断三角形FF1M1与三角形N1F
已知椭圆M:x2/a2+y2/b2=1(a>b>0)圆F:(x+c)2+y2=(a-c)2,c为椭圆的半焦距.过点p(a-2a2/c,0)作直线L与椭圆M交于A,C两点,当直线L与圆F切与x轴上方一点B时,直线L的斜率为 根号15/15(1)求椭圆的离
已知点P(5,0)和圆:x2+y2=16(1)自点P作圆O的切线,求切线的长和切线方程.(2)过点P任意作直线l与圆O交与A、B两点,求弦AB中点的轨迹方程.
已知圆x2+y2=9与圆x2+y2-4x+4y-1=0关于直线l对称,则直线l的方程为( )