今天碰到了难题:因式分解:4 4 4X +Y +(X+Y)如果看不懂算式,请看语言叙述:X的4次方加上Y的4次方再加上X与Y的和的4次方.感激不尽!
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:21:04
今天碰到了难题:因式分解:4 4 4X +Y +(X+Y)如果看不懂算式,请看语言叙述:X的4次方加上Y的4次方再加上X与Y的和的4次方.感激不尽!
今天碰到了难题:因式分解:
4 4 4
X +Y +(X+Y)
如果看不懂算式,请看语言叙述:X的4次方加上Y的4次方再加上X与Y的和的4次方.
感激不尽!
今天碰到了难题:因式分解:4 4 4X +Y +(X+Y)如果看不懂算式,请看语言叙述:X的4次方加上Y的4次方再加上X与Y的和的4次方.感激不尽!
原式=(X^2)^2+(Y^2)^2+(X+Y)^4
=(X^2+Y^2)^2-2(XY)^2+(X+Y)^4
=((X+Y)^2-2XY)^2-2(XY)^2+(X+Y)^4
设X+Y=Z
原式=(Z-2XY)^2-2(XY)^2+(Z)^4
=(Z^4-4XYZ^2+4(XY)^2)-2(XY)^2+(Z)^4
=2Z^4-4XYZ^2+2(XY)^2
=2(Z^4-2XYZ^2+(XY)^2)
=2((Z^2)^2-2XYZ^2+(XY)^2)
=2(Z^2-XY)^2
=2((X+Y)^2-XY)^2
=2(X^2+Y^2+XY)^2
如果有不明白的你可以补充说明,我看见拉就回答.
令m=x^2+y^2,n=2x^2*y^2
X的4次方加上Y的4次方再加上X与Y的和的4次方=m^2-n+(m+n)^2=2m^2+2mn+n^2-n=....
观察原题,肯定不可以使用展开再组合,不然就太复杂,那么就只有去边打开边组合了,解题技巧见下面,其实这道题很多奥数书上都有,可以买一本好的奥数书来看。其实不用这样来提问的。
原算术式=(x^2+y^2)^2-2x^2y^2+(x+y)^4
=[(x+y)^2-2xy]^2-2x^2y^2+(x+y)^4
=[(x+y)^2]^2-4xy(x...
全部展开
观察原题,肯定不可以使用展开再组合,不然就太复杂,那么就只有去边打开边组合了,解题技巧见下面,其实这道题很多奥数书上都有,可以买一本好的奥数书来看。其实不用这样来提问的。
原算术式=(x^2+y^2)^2-2x^2y^2+(x+y)^4
=[(x+y)^2-2xy]^2-2x^2y^2+(x+y)^4
=[(x+y)^2]^2-4xy(x+y)^2+4x^2y^2- 2x^2y^2+(x+y)^4
=2(x+y)^4-4xy(x+y)^2+2x^2y^2
=2[(x+y)^4-2xy(x+y)^2+(xy)^2]
=2[(x+y)^2-xy]^2
=2(x^2+xy+y^2)^2
谢谢阅读,如果觉得可以的话就把分给我吧,谢谢,再见。
收起
很简单的啦,慢慢看步骤就会啦
x^4+y^4+(x+y)^4
=(x^2+y^2)^2-2x^2y^2+(x+y)^4
=[(x+y)^2-2xy]^2-2x^2y^2+(x+y)^4
=[(x+y)^2]^2-4xy(x+y)^2+4x^2y^2-2x^2y^2+(x+y)^4
=2(x+y)^4-4xy(x+y)^2+2x^2y^2
=2[(x+y)^4-2xy(x+y)^2+(xy)^2]
=2[(x+y)^2-xy]^2
=2(x^2+xy+y^2)^2
x^4+y^4+(x+y)^4
=(x^2+y^2)^2-2x^2y^2+(x+y)^4
=[(x+y)^2-2xy]^2-2x^2y^2+(x+y)^4
=[(x+y)^2]^2-4xy(x+y)^2+4x^2y^2-2x^2y^2+(x+y)^4
=2(x+y)^4-4xy(x+y)^2+2x^2y^2
=2[(x+y)^4-2xy(x+y)^2+(xy)^2]
=2[(x+y)^2-xy]^2
=2(x^2+xy+y^2)^2
原式=(x^2+y^2)^2-2x^2y^2+(x+y)^4
=[(x+y)^2-2xy]^2-2x^2y^2+(x+y)^4
=[(x+y)^2]^2-4xy(x+y)^2+4x^2y^2- 2x^2y^2+(x+y)^4
=2(x+y)^4-4xy(x+y)^2+2x^2y^2
=2[(x+y)^4-2xy(x+y)^2+(xy)^2]
=2[(x+y)^2-xy]^2
=2(x^2+xy+y^2)^2
原式=(X2)2+(Y2)2+(X+Y)2乘以(X+Y)2=(X2)2+(Y2)2+(X2+2XY+Y)=2
差不多
x^4+y^4+(x+y)^4
=(x^2+y^2)^2-2x^2y^2+(x+y)^4
=[(x+y)^2-2xy]^2-2x^2y^2+(x+y)^4
=[(x+y)^2]^2-4xy(x+y)^2+4x^2y^2- 2x^2y^2+(x+y)^4
=2(x+y)^4-4xy(x+y)^2+2x^2y^2
=2[(x+y)^4-2xy(x+y)^2+(xy)^2]
=2(x^2+xy+y^2)^2
...好像不分解的式子还漂亮一点
原式=(x^2+y^2)^2-2x^2y^2+(x+y)^4
=[(x+y)^2-2xy]^2-2x^2y^2+(x+y)^4
=[(x+y)^2]^2-4xy(x+y)^2+4x^2y^2- 2x^2y^2+(x+y)^4
=2(x+y)^4-4xy(x+y)^2+2x^2y^2
=2[(x+y)^4-2xy(x+y)^2+(xy)^2]
=2[(x+y)^2-xy]^2
=2(x^2+xy+y^2)^2
原式=(x^2+y^2)^2-2x^2y^2+(x+y)^4
=[(x+y)^2-2xy]^2-2x^2y^2+(x+y)^4
=[(x+y)^2]^2-4xy(x+y)^2+4x^2y^2- 2x^2y^2+(x+y)^4
=2(x+y)^4-4xy(x+y)^2+2x^2y^2
=2[(x+y)^4-2xy(x+y)^2+(xy)^2]
=2[(x+y)^2-xy]^2
=2(x^2+xy+y^2)^2
参见其他解答,方法基本一致,我就不赘述了
把原式先加上和减去一个2倍个XY的平方,前面可以变成X和Y的平方和的完全平方,这样再把-2倍个XY的平方拆成两个负XY的平方,分别和前后用平方差公式,再计算化简后,你会发现他们前后是有公因式的了
(X和Y的和的4方,可以看成X和Y的和的平方的平方)...
全部展开
把原式先加上和减去一个2倍个XY的平方,前面可以变成X和Y的平方和的完全平方,这样再把-2倍个XY的平方拆成两个负XY的平方,分别和前后用平方差公式,再计算化简后,你会发现他们前后是有公因式的了
(X和Y的和的4方,可以看成X和Y的和的平方的平方)
收起