壹.1×2+2×3+3×4+...+100×101=?贰.1×2+2×3+3×4+...+n(n+1)=?叁.1×2×3+2×3×4+...+n(n+1)(n+2)=?明天就要交了

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:47:05
壹.1×2+2×3+3×4+...+100×101=?贰.1×2+2×3+3×4+...+n(n+1)=?叁.1×2×3+2×3×4+...+n(n+1)(n+2)=?明天就要交了
x){xFFknmh`px-)6ԴITy aTlF%+nbY]KjI*'l7X@L"`X_`g3BPXPHXZ&`&X2 kBFhMb#]KK-(WaD$Ӵ ; ZH*&& DR >RM~qAb4zmAPw=0`d늗+ntOA/y72)^lݎMbV=3mr~l*eWjxO)φX bĦ Ѩoy(

壹.1×2+2×3+3×4+...+100×101=?贰.1×2+2×3+3×4+...+n(n+1)=?叁.1×2×3+2×3×4+...+n(n+1)(n+2)=?明天就要交了
壹.1×2+2×3+3×4+...+100×101=?
贰.1×2+2×3+3×4+...+n(n+1)=?
叁.1×2×3+2×3×4+...+n(n+1)(n+2)=?
明天就要交了

壹.1×2+2×3+3×4+...+100×101=?贰.1×2+2×3+3×4+...+n(n+1)=?叁.1×2×3+2×3×4+...+n(n+1)(n+2)=?明天就要交了
壹.1×2+2×3+3×4+...+100×101
=1/3*1*2*3+1/3(2*3*4-1*2*3)+1/3(3*4*5-2*3*4)+...+1/3(100*101*102-99*100*101)
=1/3(1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+.+100*101*102-99*100*101)
=1/3*100*101*102
=343400
贰.1×2+2×3+3×4+...+n(n+1)=?
=1/3n(n+1)(n+2)
叁.1×2×3+2×3×4+...+n(n+1)(n+2)=?
=1/4n(n+1)(n+2)(n+3)

壹.1×2+2×3+3×4+...+100×101
=1/3*1*2*3+1/3(2*3*4-1*2*3)+1/3(3*4*5-2*3*4)+...+1/3(100*101*102-99*100*101)
=1/3(1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+....+100*101*102-99*100*101)
=1/3*100*101*102
=343400
贰.1×2+2×3+3×4+...+n(n+1)=?
=1/3n(n+1)(n+2)

壹.1×2+2×3+3×4+...+100×101
=1/3*1*2*3+1/3(2*3*4-1*2*3)+1/3(3*4*5-2*3*4)+...+1/3(100*101*102-99*100*101)
=1/3(1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+....+100*101*102-99*100*101)
=1/3*100*101*102 <...

全部展开

壹.1×2+2×3+3×4+...+100×101
=1/3*1*2*3+1/3(2*3*4-1*2*3)+1/3(3*4*5-2*3*4)+...+1/3(100*101*102-99*100*101)
=1/3(1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+....+100*101*102-99*100*101)
=1/3*100*101*102
=343400
贰.1×2+2×3+3×4+...+n(n+1)=?
=1/3n(n+1)(n+2)
叁.1×2×3+2×3×4+...+n(n+1)(n+2)=?
=1/4n(n+1)(n+2)(n+3)
壹.1×2+2×3+3×4+...+100×101
=1/3*1*2*3+1/3(2*3*4-1*2*3)+1/3(3*4*5-2*3*4)+...+1/3(100*101*102-99*100*101)
=1/3(1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+....+100*101*102-99*100*101)
=1/3*100*101*102
=343400
贰.1×2+2×3+3×4+...+n(n+1)=?
=1/3n(n+1)(n+2)

收起

343400

汗~~~~~~~~~~高深阿

1×2+2×3+3×4+...+100×101
=1/3*1*2*3+1/3(2*3*4-1*2*3)+1/3(3*4*5-2*3*4)+...+1/3(100*101*102-99*100*101)
=1/3(1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+....+100*101*102-99*100*101)
=1/3*100*101*102
=343400

壹.1×2+2×3+3×4+...+100×101
=1/3*1*2*3+1/3(2*3*4-1*2*3)+1/3(3*4*5-2*3*4)+...+1/3(100*101*102-99*100*101)
=1/3(1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+....+100*101*102-99*100*101)
=1/3*100*101*102
...

全部展开

壹.1×2+2×3+3×4+...+100×101
=1/3*1*2*3+1/3(2*3*4-1*2*3)+1/3(3*4*5-2*3*4)+...+1/3(100*101*102-99*100*101)
=1/3(1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+....+100*101*102-99*100*101)
=1/3*100*101*102
=343400

贰.1×2+2×3+3×4+...+n(n+1)=?
=1/3n(n+1)(n+2)
叁.1×2×3+2×3×4+...+n(n+1)(n+2)=?
=1/4n(n+1)(n+2)(n+3)

收起