对于定义域为d的函数y=f(x),若同时满足下列条件1.f(x)在d内单调递增或单调递减 2.存在区间【a,b】上的值域为【a,b】,把f(x)叫闭函数.1.求闭函数y=-x的三方符合条件2的区间 2.判断f(x)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 23:27:52
对于定义域为d的函数y=f(x),若同时满足下列条件1.f(x)在d内单调递增或单调递减 2.存在区间【a,b】上的值域为【a,b】,把f(x)叫闭函数.1.求闭函数y=-x的三方符合条件2的区间 2.判断f(x)=
xV]oH+<@!6}YG򂴊ZDߜ$&6!BH!nJpZi axlvڗx@b{3׎/v!ժ?޼$;wpBYZjld; -vfw~1Yۚ9Ha//4+W[#59Phr4K#xsB^}evwYU}Qə0/1|G=5MfN)VYӣ"jG)bkRV,b$>`ohio[ׁ N.oіԂPv]F~ڹ-rr/F J{uc}bcܚD4s ɇj=rip+ˎC0IhN6H:Q\d2Q H(>̜r flsrA9 R Iw-+.:>Cg r ZF+uҵvVCqmOs#/ o)(s0SO'U'ޠ`&YG4*0?qG'.}50)wG황> f"?.=,_ch?:+A{ЄoM'3extn(Qrw酩@Y%f嘞~~HY ߨ?֬!ivAi~9>C(9ޅə#,i[7*VF[wHXv_5Gp{ȍ6ߙ=|I[/;8`QY~Jx7(9 \kG3{hu~ D|ȕV^a ⯸^'!n2ދ׀ăinmj8~HXm]17 ;&R0nm&NǠA=؟n<`

对于定义域为d的函数y=f(x),若同时满足下列条件1.f(x)在d内单调递增或单调递减 2.存在区间【a,b】上的值域为【a,b】,把f(x)叫闭函数.1.求闭函数y=-x的三方符合条件2的区间 2.判断f(x)=
对于定义域为d的函数y=f(x),若同时满足下列条件
1.f(x)在d内单调递增或单调递减 2.存在区间【a,b】上的值域为【a,b】,把f(x)叫闭函数.1.求闭函数y=-x的三方符合条件2的区间 2.判断f(x)=3/4x+1/x(x大于0)是否为闭函数,说明理由 3.判断函数y=k+根号下x+2是否为闭函数,若是.求出k的取值范围

对于定义域为d的函数y=f(x),若同时满足下列条件1.f(x)在d内单调递增或单调递减 2.存在区间【a,b】上的值域为【a,b】,把f(x)叫闭函数.1.求闭函数y=-x的三方符合条件2的区间 2.判断f(x)=
(1)、∵y=-x³是[a,b]上的减函数
∴f(a)=-a³=b
f(b)=-b³=a
∴a/b=±1
又∵-a³=b,
∴a=-1,b=1
∴所求区间为[-1,1]
(2)、∵f′(x)=3/4-1/x²,x∈(0,+∞),
令f′(x)=3/4-1/x²>0,得x>(2/3)根号3
∴x>(2/3)根号3时,f(x)为((2/3)根号3 ,+∞)上的增函数.
令f′(x)=3/4-1/x²<0,得0<x<(2/3)根号3
∴f(x)为(0,(2/3)根号3 )上的减函数.
∴f(x)不是(0,+∞)上的单调函数.
∴f(x)不是(0,+∞)上的闭函数.
(3)、易知f(x)=k+根号(x+2)是[-2,+∞〕上的增函数.且f(x)≥k
设f(x)=k+根号(x+2)满足条件②的区间是[a,b]
则f(a)=a,f(b)=b,由此可知
方程f(x)=x的两根是a,b,且a≠b
整理方程f(x)=x得
x²-(2k+1)x+k²-2=0
判别式>0(方程有两不相等的实根),解得k>-9/4
方程的小根(求根公式)≥k(根据函数值域),解得-9/4≤k≤-2
方程的小根(求根公式)≥-2(根据定义域),解得k≥-9/4
以上三个k的取值范围取交集得-9/4<k≤-2
综上,函数y=k+根号(x+2)为闭函数,k的取值范围是-9/4<k≤-2

(1)由题可以知道闭函数可以取所有的实数,且单调递减的。Y=-X^3当X=-1时Y=1,当X=1时Y=-1,这样A=-1,B=1 所以区间是[-1,1]
答案补充
Y=-X^3这是个单调递减的函数,他的每一个Y都是X的三次方,他的定义域要等于值域,那么必然有X=Y 的时候,也只有在-1和1这两点才可能。当定义域在[-1,1]之间时,值域也是在[-1,1]。当在大于1时,无论取什...

全部展开

(1)由题可以知道闭函数可以取所有的实数,且单调递减的。Y=-X^3当X=-1时Y=1,当X=1时Y=-1,这样A=-1,B=1 所以区间是[-1,1]
答案补充
Y=-X^3这是个单调递减的函数,他的每一个Y都是X的三次方,他的定义域要等于值域,那么必然有X=Y 的时候,也只有在-1和1这两点才可能。当定义域在[-1,1]之间时,值域也是在[-1,1]。当在大于1时,无论取什么值Y都小于0,不可能定义域等于值域。当在小于-1时,无论取什么值Y都大于0,不可能定义域等于值域。

收起

对于函数y=f(x)(x∈D),D为此函数的定义域,若同时满足下列两个条件:①f(x)在D内单调对于函数y=f(x)(x∈D),D为此函数的定义域,若同时满足下列两个条件:①f(x)在D内单调递增或单调递减;②存在区间 对于定义域为D的函数y=f(x),如果存在区间[m,n] D,同时满足:①f(x)...②当定义域是[m,n]时,f(x)的值域也对于定义域为D的函数y=f(x),如果存在区间[m,n] D,同时满足:①f(x)...②当定义域是[m,n]时,f(x)的值 对于定义域为D的函数Y=F(X) ,若同时满足:①Y=F(X) 在D 内单调递增或单调递减;②存在区间[A,B]属于D,使F(X)在[A,B]上的值域为[A,B] ;那么把函数 Y=F(X)叫做闭函数 对于定义域为D的函数y=f(x),若同时满足下列条件:(1)f(x)在D内单调递增或单调递减②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x∈D)叫闭函数.(3)若y=k+√(x+2)是闭函数 对于定义域为D的函数y=f(x),若同时满足下列条件:(1)f(x)在D内单调递增或单调递减②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x∈D)叫闭函数.(1)求闭函数y=-x³符 对于定义域为D的函数y=f(x) ,若同时满足下列条件:① f(x)在D内单调递增或单调递减;②存在区间[ a,b]属于D ,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x属于D)叫闭函数.(1)求闭函数y=-x^3 符 高中数学题、关于函数的、高手来帮帮忙、很急.对于定义域为D的函数y=f(x),若同时满足下列条件:①、f(x)在D内单调递增或单调递减;②、存在区间【a,b】是D的真子集,使f(x)在【a,b】上的 对于定义域为D的函数y=f(x),若同时满足:①f(x)在D内单调递增或单调递减;②存在区间[a,b]∈D,使f(x)在[a,b]上的值域为[a,b],那么把函数y=f(x)(x∈D)叫做“同族函数”. (1)求“同 对于定义域为d的函数y=f(x),若同时满足下列条件1.f(x)在d内单调递增或单调递减 2.存在区间【a,b】上的值域为【a,b】,把f(x)叫闭函数.1.求闭函数y=-x^3符合条件2的区间 2.判断f(x)=(3/4)x+ 对于定义域为d的函数y=f(x),若同时满足下列条件 1.f(x)在d内单调递增或单调递减 2.存在区间【a,b】上的值域为【a,b】,把f(x)叫闭函数.1.求闭函数y=-x^3符合条件2的区间 2.判断f(x)=(3/4)x 对于定义域为d的函数y=f(x),若同时满足下列条件1.f(x)在d内单调递增或单调递减 2.存在区间【a,b】上的值域为【a,b】,把f(x)叫闭函数.1.求闭函数y=-x的三方符合条件2的区间 2.判断f(x)= 对于定义域为d的函数y=f(x),若同时满足下列条件1.f(x)在d内单调递增或单调递减 2.存在区间【a,b】上的值域为【a,b】,把f(x)叫闭函数.1.求闭函数y=-x的三方符合条件2的区间 2.判断f(x)= 这样.对于函数y=f(x)(x∈D),D为此函数的定义域,若同时满足下列两个条件:①f(x)在D内单调递增或单调递减;②存在区间〖a,b〗上的值域为〖a,b〗,那么我们把y=f(x),x∈D叫闭函数.(1)求 函数f(x)的定义域为D,若对于任意x1,x2属于D,当x1 已知函数f(x)的定义域为R,且对于任意实数x、y总有f(x+y)=f(x)·f(y)已知函数f(x)的定义域为R,且对于任意实数x、y总有f(x+y)=f(x)·f(y)(1)试说明函数y=f(x)的图像必经过(0,0)点或(0,1)点(2)若存在x0∈ 设函数f(x)的定义域为R,对于任意实数x,y,总有f(x+y)=f(x)*f(y),当X>0,0 函数f(x)定义域为R,且对于一切实数x,y都在f(x+y)=f(x)+(y),试判断f(x)的奇偶性. 设函数f(x)的定义域为D,如果对于任意的x∈D,存在唯一的y∈D,使 f(x)+f(y) 2=C(C为常数)成立,则称函数f(x)在D上均值为C,给出下列四个函数①y=x3,②y= (i/2)^x,③y=lgx,④y=2sinx+1,则满足在其定义域