圆C满足截y轴所得弦长2,被x轴分两段圆弧,弧长比为3:1,圆心C到直线x-2y=0距离为五分之根号五求圆C方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:25:13
圆C满足截y轴所得弦长2,被x轴分两段圆弧,弧长比为3:1,圆心C到直线x-2y=0距离为五分之根号五求圆C方程
xSMo@+{69$;ȧrPz!7M!jS4(()-$% [OA޵9/&zxv7oL<š~ n]QG)A"$w Mt~(gsT׸siNcۉX;Cxd>?(~턝~<}Bdyt{n,ۑcPvTmOvAEsS Pw.$y'Gv5W{AgiR}q++uqނ:2E m\ `4+^͜*$dFNi!])L&1-MS١^Keos[  GP2ty5hSl.dЩ)sh୩Z,KݰHBQA3Y5s` EtJH<2")RzSc|

圆C满足截y轴所得弦长2,被x轴分两段圆弧,弧长比为3:1,圆心C到直线x-2y=0距离为五分之根号五求圆C方程
圆C满足截y轴所得弦长2,被x轴分两段圆弧,弧长比为3:1,圆心C到直线x-2y=0距离为五分之根号五求圆C方程

圆C满足截y轴所得弦长2,被x轴分两段圆弧,弧长比为3:1,圆心C到直线x-2y=0距离为五分之根号五求圆C方程
让中心P(A,B),半径为r,则点P到x轴,y轴,分别| B |,| A |.通过假设
所得的圆心角的劣弧已知的圆形横截面的x轴P为90°时,得到的字符串√2R时,R 2 = 2B2,的P-已知的圆形横截面的X轴长度 BR />造成的2弦长
R2 = A2 +1圆P Y [轴上的截距.
2B2-A2 = 1.
另一点P(A,B)到直线x-2Y = 0的距离d = | A-2B | /√5,
5D2 = | A-2B | 2
= A2 4 B2-4AB
≥A2 4 B2-2(A2 + B2)
= 2B2-A2 = 1,
当且仅当有一个平等= b的方程,这当5D2 = 1,所以,最低值d.
为a = b,2B2-A2 = 1
为a = 1,B = 1或A = -1,B = -1.
R2 = 2B2
R =√2.
∴(X-1)2 +(Y-1)2 = 2,或(x 1)2 +(Y 1)2 = 2.

圆C满足截y轴所得弦长2,被x轴分两段圆弧,弧长比为3:1,圆心C到直线x-2y=0距离为五分之根号五求圆C方程 设圆C满足:(1)截y轴所得弦长为2,(2)被x轴分成两段圆弧,其弧长比为3:1,在满足上述条件的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程 直线和圆的方程难题已知圆C满足如下三个条件 1.截y轴所得的弦长为2 2.被轴分成的两段圆弧的弧长之比为3:1 3.圆心C到直线X-2Y的距离为根号5/5.求圆C的方程.(麻烦仔细) 圆满足1.截y轴所得弦长为2:2.被x轴分两弧弧比为3:1,在所有满足条件1和2的园中 求圆心到直线x-2y=0的距离最小的圆的方程.(1)截y轴所得弦长为2;(2).被x轴分两弧弧比为3:1 设圆满足:截Y轴所得弦长为2且被X轴分成两段圆弧,其弧长的比3:1,在满足条件的圆中.求圆心到直线X-2Y=0的...设圆满足:截Y轴所得弦长为2且被X轴分成两段圆弧,其弧长的比3:1,在满足条件的圆中. 已知圆P:(x-a)²+(y-b)²=r²(r不等于0),满足:1截y轴所得弦长为2;2被x轴分成两段圆弧,已知圆P:(x-a)²+(y-b)²=r²(r不等于0),满足:1截y轴所得弦长为2;2被x轴分成两段 设圆满足:⑴截y轴所得弦长为2 ⑵被x轴分为两段圆弧,其弧长的比是3:1 在满足条件⑴,⑵的所有设圆满足:⑴截y轴所得弦长为2⑵被x轴分为两段圆弧,其弧长的比是3:1在满足条件⑴,⑵的所有圆中, 高一 数学 求圆心到直线l:x-2y=0的距离最小的圆的方程 请详细解答,谢谢! (31 20:42:6)1、设圆C满足:(1)截y轴所得弦长为2,(2)被x轴分成两段圆弧,其弧长比为3:1,在满足上述条件的所有圆 已知圆C满足:截Y轴所得弦长为2;被X轴分成两段圆弧,其弧长之比为3:1;圆心C到直线L:X-2Y=0距离为五分之根号五,求圆C方程在平面直角坐标系XOY中,已知圆C1圆心坐标为(-3,1),半径为2;圆C2 圆满足1.截y轴所得弦长为2:2.被x轴分两弧弧比为3:1,在满足两个条件的园中,求圆心到点p(0 3)的距离最小的圆的方程 圆满足1.截y轴所得弦长为2:2.被x轴分两弧弧比为3:1,满足条件12 求圆心到直线x-2y=0的距离最小的方程. 设圆满足:条件1:截y轴所得弦长为2,条件:2被x轴分成两段圆弧,其弧长的比为3:1,在满足条件1,2的所有...设圆满足:条件1:截y轴所得弦长为2,条件:2被x轴分成两段圆弧,其弧长的比为3:1,在满足条件1,2 直线l:X-Y+1+0截椭圆C:4x^2+y^2=4所得的弦长 圆c满足裁y轴所得玄长2,被x轴分成二段弧,其弧长比为3:1,圆心到直l:x-2y=0的距离为五分之根号五 求圆c怎么做?拜托了. 一道数学题,已知圆满足:(1)截Y轴所得弦长为2(2)被X轴分成两段弧,其弧长之比为3:1(3)圆心到直线L:x-2y=0 的距离为(根号5)/5 ,求这个圆的方程***这个圆同时满足以上三个条件哦,有结 已知圆同时满足 截Y轴所得弦长为2//被X轴分成两段圆弧,其弧长之比为3:1//圆心到直线X-2Y=0的距离为根5比5,求该圆方程 已知圆同时满足 截Y轴所得弦长为2//被X轴分成两段圆弧,其弧长之比为3:1//圆心到直线X-2Y=0的距离为根5比5,求该圆方程 已知圆满足:①截y轴所得弦长为2,②被x轴分成两段圆弧,其弧长比为3:1.在满足条件的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆方程.