向量组a1,…as的秩为r1,向量组b1,…bt的秩为r2,向量组a1,…as,b1,…bt秩为r3,证明max{r1,r2}
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 09:30:11
x){:a[
u5,K,~>Ov*2ԁK&%JF::u Ju^o|6/7hXQMR>m/_^ g/XٳΆ',2|c]5,6}@-ct^llT
DPS,dˠ`ˌXbjӎa͈=:f>ٱi4$$ف t
向量组a1,…as的秩为r1,向量组b1,…bt的秩为r2,向量组a1,…as,b1,…bt秩为r3,证明max{r1,r2}
向量组a1,…as的秩为r1,向量组b1,…bt的秩为r2,向量组a1,…as,b1,…bt秩为r3,证明max{r1,r2}
向量组a1,…as的秩为r1,向量组b1,…bt的秩为r2,向量组a1,…as,b1,…bt秩为r3,证明max{r1,r2}
因为向量组a1,…as的秩为r1
所以,a1,…as有r1个线性无关的向量,设为C1,C2……Cr1
因为向量组b1,…bt的秩为r2
所以,b1,…bs有r2个线性无关的向量,设为D1,D2……Dr2
则a1,…as,b1,…bt线性无关的向量可以在C1,C2……Cr1,D1,D2……Dr2中取
所以r3
向量组a1,…as的秩为r1,向量组b1,…bt的秩为r2,向量组a1,…as,b1,…bt秩为r3,证明max{r1,r2}
设向量组A:a1…as的秩为r1,向量组B:b1…bt的秩为r2,向量组C:a1…as,b1…br的秩为r3,证明max(r1,r2)证max(r1,r2)≤r3≤r1+r2
(1/2)证明:如果向量组A:a1,a2,---as的秩为r1,向量组B:b1,b2---bt的秩是r2,向量组C:a1,---as,b1,--
线性代数里向量组的线性组合已知向量r1,r2由向量b1,b2,b3线性表示为r1=3b1-b2+b3,r2=b1+2b2+4b3,向量b1,b2,b3由向量a1,a2,a3线性表示为b1=2a1+a2-5a3,b2=a1+3a2+a3,b3=-a1+4a2-a3,求向量r1,r2由向量a1,a2,a3的线性表示
向量组a1,a2,---,as线性无关,则n维列向量组b1,b2,bs线性无关的充分必要条件为 向量组a1,a2,---,as线性无关,向量组b1,b2,bs线性无关的充分必要条件为 A向量组a1,a2,---,as可由向量组b1,b2,bs线性表示B向量
设向量组(1)a1,a2,···an;(2)b1,b2,···bn的秩分别为r1,r2,.a1 a2...an b1 b2 ...bn 的秩r3 则max(r1 ,r2)max(r1,r2)
s维向量a1,a2.as线性无关,且可由向量组b1,b2...br线性表出,证明:向量组b1,b2.br的秩为s
(线性代数)向量a1+a2=3b,则a1,a2,……as,b1,b2,……,bs线性相关吗原题:在s+t个向量构成的向量组a1,a2,……,as,b1,b2,……,bt中,已知a1+a2=3b,则向量组a1,a2,……as,b1,b2,……,bs的线性相关性为?请给出理
问道线性代数向量的证明题如果向量组a1,a2,...,as可由向量组b1,b2,...,bt线性表出求证:r(a1,a2,...,as)
线性代数证明题:设向量组a1,a2,a3,.as的秩为r1,向量组β1,β2,.βt的秩为r2,(接下面)向量组a1,a2,...as,β1,β2,...βt的秩为r3,证明:max{r1,r2}≦r3≦r1+r2
向量组证明题 设向量组(1)a1,a2,.as,能由向量组(2)b1,b2,.bt线性表示为(a1,a2,.as)=(b1,b2,.bt)A,其中A为t*s矩阵,且b1,b2,.bt线性无关,证明a1,a2,.as线性无关的充分必要条件R(A)=s
设向量组B:b1,b2,b3,...,br能由向量组A:a1,a1,...,as线性表示为 ( b1,b2,...,br)=(a1,a2,...,as)K,其中K为S*r矩阵,且向量组A线性无关.证明向量组B线性无关的充分必要条件是:R(k)=r
设向量组B:b1,b2,b3,...,br能由向量组A:a1,a1,...,as线性表示为 ( b1,b2,...,br)=(a1,a2,...,as)K,其其中K为S*r矩阵,且向量组A线性无关。证明向量组B线性无关的充分必要条件是:R(k)=r
n维向量组a1,a2,...as线性无关,b1=a1+a2,b2=a2+a3,...,bs=as+a1,证明:b1,...bs线性无关的充要条件是s为奇数
线性代数问题:设向量组a1,a2,.,as线性无关,向量b1可由它线性表示,而向量b2不能由它线性表示,证明a1,a2,.,as,b1+b2是线性无关的
线性代数,如果向量组a1,a2...as可以由向量组b1,b2,...bt表示证明r(a1,a2...an)
向量组a1,a2……as与向量组b1,b2……bs等价,则这两个向量组同时为线性相关或同为线性无关.求证明.
已知向量组{a1,a2,a3},{b1,b2,b3}满足 b1=a1+a2 b2=a1-2a2 b3=a1+a2-7a3,证明向量组a线性无关的充要条件充要条件为向量组b线性无关