图9是某城市部分街道的示意图,AF//BC,EC⊥BC如图,是某城市部分街道的示意图,AF//BC,EC⊥BC,BA//DE,BD//AE,F是EC的中点.甲、乙两人同时从B站乘车到F站,甲的路线是B→A→E→F;乙的路线是B→D→C→F,假设

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 17:46:11
图9是某城市部分街道的示意图,AF//BC,EC⊥BC如图,是某城市部分街道的示意图,AF//BC,EC⊥BC,BA//DE,BD//AE,F是EC的中点.甲、乙两人同时从B站乘车到F站,甲的路线是B→A→E→F;乙的路线是B→D→C→F,假设
xUnXOl0hcP Khhy"IICIL"5Ӗz!iic\B%cB1'Kh,aᳯkqt4){mo1{,<LQ0HtxId “B"ȘB2ÈR 2;.l|huYF2M^7X_ynGKpsێy AS +8<%Ei> *ud Vv6;cEխd~߃pm펽p֗zؚt͈~[-33[p뙙B)Ѕb00_50Yup%. VJFLxn&sOj'ƩB>kkDr:6 QKDB5빘&[ ~ {X1,X ɤFS<bv1.3+뎈d ~}Y'ͦWCi޽U0ˈhVijXV$JSFW[I4dF?+GDd I0쯍n-7qӀ/V@#*ȭ56`)$bYDgj>i\Rg(=GN*ŀ.?@QHɜ7l Gy ,)'ZBv'*ف#Kp޽je <H`#z=<% h,y;y7UB.a~ )PaP=+N_/ %䖜~ no|q?pF!KFX({9 w7pw/'aewl

图9是某城市部分街道的示意图,AF//BC,EC⊥BC如图,是某城市部分街道的示意图,AF//BC,EC⊥BC,BA//DE,BD//AE,F是EC的中点.甲、乙两人同时从B站乘车到F站,甲的路线是B→A→E→F;乙的路线是B→D→C→F,假设
图9是某城市部分街道的示意图,AF//BC,EC⊥BC
如图,是某城市部分街道的示意图,AF//BC,EC⊥BC,BA//DE,BD//AE,F是EC的中点.甲、乙两人同时从B站乘车到F站,甲的路线是B→A→E→F;乙的路线是B→D→C→F,假设两车速度相同,途中耽误时间相同,那么谁先到达F站?请说明理由.

图9是某城市部分街道的示意图,AF//BC,EC⊥BC如图,是某城市部分街道的示意图,AF//BC,EC⊥BC,BA//DE,BD//AE,F是EC的中点.甲、乙两人同时从B站乘车到F站,甲的路线是B→A→E→F;乙的路线是B→D→C→F,假设
BA//DE,BD//AE
所以ABDE是平行四边形
甲的路程是L1=AB+AE+EF
乙的路程L2=BD+CD+CF
由题得,AE=BD EF=CF
所以判断 AB与CD的大小
因为EC⊥BC,AF//BC,
所以EF⊥AF
而F是EC的中点
所以DE=CD
因为DE=AB
所以AB=CD
所以两车同时到达.

可以同时到达.理由如下:
连接BE交AD于G,
∵BA∥DE,AE∥DB,
∴四边形ABDE为平行四边形,
∴AB=DE,AE=BD,BG=GE,
∵AF∥BC,G是BE的中点
∴F是CE的中点(过三角形一边的中点平行于另一边的直线必平分第三边),
即EF=FC,
∵EC⊥BC,AF∥BC,
∴AF⊥CE,
即AF垂直...

全部展开

可以同时到达.理由如下:
连接BE交AD于G,
∵BA∥DE,AE∥DB,
∴四边形ABDE为平行四边形,
∴AB=DE,AE=BD,BG=GE,
∵AF∥BC,G是BE的中点
∴F是CE的中点(过三角形一边的中点平行于另一边的直线必平分第三边),
即EF=FC,
∵EC⊥BC,AF∥BC,
∴AF⊥CE,
即AF垂直平分CE,
∴DE=DC,即AB=DC,
∴AB+AE+EF=DC+BD+CF,
∴二人同时到达F站.

收起

可以同时到达.理由如下:
连接BE交AD于G,
∵BA∥DE,AE∥DB,
∴四边形ABDE为平行四边形,
∴AB=DE,AE=BD,BG=GE,
∵AF∥BC,G是BE的中点
∴F是CE的中点(过三角形一边的中点平行于另一边的直线必平分第三边),
即EF=FC,
∵EC⊥BC,AF∥BC,
∴AF⊥CE,
即AF垂直...

全部展开

可以同时到达.理由如下:
连接BE交AD于G,
∵BA∥DE,AE∥DB,
∴四边形ABDE为平行四边形,
∴AB=DE,AE=BD,BG=GE,
∵AF∥BC,G是BE的中点
∴F是CE的中点(过三角形一边的中点平行于另一边的直线必平分第三边),
即EF=FC,
∵EC⊥BC,AF∥BC,
∴AF⊥CE,
即AF垂直平分CE,
∴DE=DC,即AB=DC,
∴AB+AE+EF=DC+BD+CF,
∴二人同时到达F站.

收起

可以同时到达.理由如下:
连接BE交AD于G,
∵BA∥DE,AE∥DB,
∴四边形ABDE为平行四边形,
∴AB=DE,AE=BD,BG=GE,
∵AF∥BC,G是BE的中点
∴F是CE的中点(过三角形一边的中点平行于另一边的直线必平分第三边),
即EF=FC,
∵EC⊥BC,AF∥BC,
∴AF⊥CE,
即AF垂直...

全部展开

可以同时到达.理由如下:
连接BE交AD于G,
∵BA∥DE,AE∥DB,
∴四边形ABDE为平行四边形,
∴AB=DE,AE=BD,BG=GE,
∵AF∥BC,G是BE的中点
∴F是CE的中点(过三角形一边的中点平行于另一边的直线必平分第三边),
即EF=FC,
∵EC⊥BC,AF∥BC,
∴AF⊥CE,
即AF垂直平分CE,
∴DE=DC,即AB=DC,
∴AB+AE+EF=DC+BD+CF,
∴二人同时到达F站.

收起

可以同时到达.理由如下:
连接BE交AD于G,
∵BA∥DE,AE∥DB,
∴四边形ABDE为平行四边形,
∴AB=DE,AE=BD,BG=GE,
∵AF∥BC,G是BE的中点
∴F是CE的中点(过三角形一边的中点平行于另一边的直线必平分第三边),
即EF=FC,
∵EC⊥BC,AF∥BC,
∴AF⊥CE,
即AF垂直...

全部展开

可以同时到达.理由如下:
连接BE交AD于G,
∵BA∥DE,AE∥DB,
∴四边形ABDE为平行四边形,
∴AB=DE,AE=BD,BG=GE,
∵AF∥BC,G是BE的中点
∴F是CE的中点(过三角形一边的中点平行于另一边的直线必平分第三边),
即EF=FC,
∵EC⊥BC,AF∥BC,
∴AF⊥CE,
即AF垂直平分CE,
∴DE=DC,即AB=DC,
∴AB+AE+EF=DC+BD+CF,
∴二人同时到达F站.

收起

如图,是某城市部分街道的示意图,AF//BC,EC⊥BC,BA//DE,BD//AE.甲、乙两人同时从B站乘车到F站,甲的路线注意F未说明是中点如图是城市部分街道示意图,AF//BC,EC⊥BC,BA//AE,甲、乙两人同时从B站乘车到F 图9是某城市部分街道的示意图,AF//BC,EC⊥BC如图,是某城市部分街道的示意图,AF//BC,EC⊥BC,BA//DE,BD//AE,F是EC的中点.甲、乙两人同时从B站乘车到F站,甲的路线是B→A→E→F;乙的路线是B→D→C→F,假设 如图,是某城市部分街道示意图如图,AF//BC,EC⊥BC,BA//DE,DB//AE,甲、乙两人同时从B站乖车致F站, 如图,是某城市部分街道的示意图,AF//BC,EC⊥BC,BA//DE,BD//AE,F是EC的中点.如图,是某城市部分街道的示意图,AF//BC,EC⊥BC,BA//DE,BD//AE,甲、乙两人同时从B站乘车到F站,甲的路线是B→A→E→F;乙的路线是B 如图,是某城市部分街道示意图,AF平行于BC,EC垂直于BC,BA平行于DE,BD平行AE,至少两种方法.急如图,是某城市部分街道示意图,AF平行于BC,EC垂直于BC,BA平行于DE,BD平行AE,甲、乙两人同时乘车从B站到F 如图是城市部分街道示意图,(至少两种方法)急如图,是某城市部分街道示意图,AF平行于BC,EC垂直于BC,BA平行于DE,BD平行AE,甲、乙两人同时乘车从B站到F站,甲乘1路车,路线是B---A---E---F;乙乘2路 如图是某城市部分街道示意图如图,是某城市部分街道示意图,F是CE的中点,EC⊥BC,BA∥DE,BD∥AE,甲、乙两人同时从B站乘车到F站,甲乘1路车,路线是B⇒A⇒E⇒F;乙乘2路车,路线是B⇒D͡ 如图是某城市部分街道示意图,点A,D,F在同一条直线上,F是CE的中点,EC垂直AF,BA平行DE,BD平行AE. 如图是城市部分街道示意图,AF//BC,EC⊥BC,BA//AE,甲、乙两人同时从B站乘车到F站,如图是城市部分街道示意图,AF//BC,EC⊥BC,BA//AE,甲、乙两人同时从B站乘车到F站,甲乘1路车,路线是B→A→E→F;乙乘2路 麻烦你了!总解不出来!好像少条件!呵呵呵·····这题是 如图,是某城市部分街道示意图,AF//BC,EC垂直BC,BA//DE,BD//AE,甲乙两人同时从B站出发到F站,甲乘1路车,路线是B--A--E--F,乙乘2路车,路线是B--D--C 初二四边形几何题求解【急!】如图,是某城市部分街道示意图,AF//BC,EC垂直BC,BA//DE,BD//AE,甲乙两人同时从B站乘车到F站,甲乘1路车,路线是B-A-E-F;乙乘2路车,路线是B-D-C-F.假设两车速度相同,途中耽 如图,这是某城市部分街道的示意图,AF平行BC,EC垂直BC,BA平行DE,DB平行AE,甲、乙两人同时从B站乘车到F站,甲乘1路车,路线是B→A→E→F,乙乘2路车,路线是B→D→C→F,假设两车速度相同,途中耽误时间 如图,是某城市部分街道示意图,△ABC、△CDE都为正三角形,A、B、C、D、E、F、G、H为公共汽车停靠站.如图,是某城市部分街道示意图,△ABC、△CDE都为正三角形,A、B、C、D、E、F、G、H为公共汽车 如图,是某区部分街道示意图,其中CE垂直平分AF,AB‖CD,BC‖DF,从B站乘车到E站只有两条路线有直接到达的 是某城市部分街道示意图,AF∥BC,EC⊥BC,BA∥DE,BD∥AE,甲、乙两人同时从B站乘车到F站,甲乘1路车,路线是B⇒A⇒E⇒F;乙乘2路车,路线是B⇒D⇒C⇒F,假设两车速度相同,途中耽误时 如图,这是某城市部分街道的示意图,AF‖BC,EC⊥BC,BA‖DE,DB‖AE,甲乙两人同时从B站乘车到F站,甲乘1路车,路线是B→A→E→F,乙乘2路车,路线是B→D↔C→F,假设两车速度相同,途中耽误时间相同,那 一道初二几何题、难= =如图,这是某城市部分街道的示意图,AF∥BC,EC⊥BC,BA∥DE,DB∥AE,甲、乙两人同时从B站乘车到F站,甲乘一路车,路线是B→A→E→F,乙乘二路车,路线是B→D→C→F,假设两车速度相 如图,是某城市部分街道示意图,AB=CD,AD=BC,EF=FC,DF⊥EC,公交车甲从A站出发,按照A,D,E,F的顺序到