一道一次函数的数学题有两条直线L1 y=ax+b 和L2 y=cx+5 ,学生甲解出它们的交点为(3,-2);学生乙因把c抄错而解出它们的交点为(四分之三,四分之一),试写出这两条直线的解析式.具体
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/05 03:51:34
xRKR@
{(7pEH2/?)0'rTVTM~o̥T]pNN̛Ǚ1u+&YP2Fe)"E3xHq͠9s~>O}
一道一次函数的数学题有两条直线L1 y=ax+b 和L2 y=cx+5 ,学生甲解出它们的交点为(3,-2);学生乙因把c抄错而解出它们的交点为(四分之三,四分之一),试写出这两条直线的解析式.具体
一道一次函数的数学题
有两条直线L1 y=ax+b 和L2 y=cx+5 ,学生甲解出它们的交点为(3,-2);学生乙因把c抄错而解出它们的交点为(四分之三,四分之一),试写出这两条直线的解析式.
具体
一道一次函数的数学题有两条直线L1 y=ax+b 和L2 y=cx+5 ,学生甲解出它们的交点为(3,-2);学生乙因把c抄错而解出它们的交点为(四分之三,四分之一),试写出这两条直线的解析式.具体
由题意甲的解答为正确答案,所以:3a+b=-2 ,(1)和3c+5=-2,(2),由方程(2)可得c=-(7/3),又有乙同学把c抄错了假设抄成d了,但是a、b没错,所以由乙的(3/4)a+b=1/4,(3)和(3/4)d+5=1/4,(4).由方程(1)、(3)可解出a=-1、b=1.从而得到直线方程.
一道一次函数与图形面积已知直线L1:y=-4+3和直线L2:y=x-6 求直线L1,L2和y轴所围成的三角形面积
一道一次函数的数学题有两条直线L1 y=ax+b 和L2 y=cx+5 ,学生甲解出它们的交点为(3,-2);学生乙因把c抄错而解出它们的交点为(四分之三,四分之一),试写出这两条直线的解析式.具体
一道初三数学题(有二次函数,一次函数,圆)直线y=mx+2与抛物线y=-x
一道关于一次函数的题目已知直线L1与直线L2:y=2x+5平行,且直线L1与X轴交点的横坐标、与y轴交点的纵坐标两者之和为-2,求直线L1的表达式
一道关于对称的数学题直线L1:3x-2y-6=0 关于直线 x-y+1=0的对称直线
一道看着就坑爹的数学题如图,在平面直角坐标系中,直线l1:与直线l2:y=kx+b相交于点A,点A的横坐标为3,直线l2交y轴于点B,且|OA|= |OB|.(1)试求直线l2的函数表达式;(2)若将直线l1沿着x轴向
初二初二初二的……………………一次函数数学题1.一次函数y=kx+k+2的图像,经过一定点,则这一个定点是?2.在直角坐标系中,直线L1经过点(2,3)和(-1,-3),直线L2经过原点,且与L1相交于点(-2,a
一次函数数学题已知,如图,直线l1:y=—3/2x+3与y轴交于点A,与直线l2交于x轴上同一点B,直线l2叫y轴与点C,且点C与点A关于X轴对称(AB为l1,CB为l2)(1)求直线L2的解析式.(2)若点P是直线L1上任意一
问大家一道数学题(一次函数的)题:在平面直角坐标系内,直线Y=X+1经过哪些象限
一次函数的一道题直线L1:y=-2x+8b-2,直线L2:y=x+b分别与x轴交于点A,B,点A在y轴的左侧,点B在y轴的右侧,直线L1交L2于点M.MN是△ABM的中线,点N的坐标是(-2,0)(1)求直线L1,L2的解析式及△ABM的面积(2)
关于一次函数的.已知L1与Y=2X+5平行,且直线L1与X轴的交点的横坐标,与Y轴交点的纵坐标两者之和为-2,求直线L1的表达式.
一道一次函数数学题已知直线L1与直线L2平行,且与直线L2相交于点M(1,4).两直线分别于x轴交于A,B两点(B点在A点右边),且三角形MAB的面积为十六,求直线L1与L2的解析式.修改第一句:已知直线
一次函数l1:y=ax+b的图像关于直线y=-x轴对称的图像l2的函数解析式为
一次函数y=ax+b的图像L1关于直线y=-x轴对称的图像L2的函数解析式是_____.如题
一道初二一次函数与几何综合题,直线l1:y=3x+n与直线l2:y=kx相交于点B(-2,1)(1)n=(7)k=(1/2),直线y3x+n与y轴交点的坐标为(0,7);(2)若平行于y轴的直线x=t分别交直线l1和l2于点C、D(
一次函数L1:y=ax+b的图像关于直线y=-x轴对称图形象L2的函数解析式是什么
[急+高分]初中一次函数综合题一道,如图,已知直线L1:y=(2/3)x+(8/3)与直线L2:y=-2x+16相交于点C,L1,L2分别交x轴于A,B两点.矩形DEFG的顶点D,E分别在直线L1、L2上,顶点F,G都在x轴上,且点G与点B重合.若矩形DE
一道数学初中一次函数图像题.直线l1:y=k1x+b1与直线l2:y=k2x+b2在同一坐标系中的图像如图所示,则关于x