证明:设f(x)在【a,b】上连续且可导,a>0,则存在m、n属于(a,b),使得f’(m )=[(a+b)/2n]f'(n)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 21:18:40
证明:设f(x)在【a,b】上连续且可导,a>0,则存在m、n属于(a,b),使得f’(m )=[(a+b)/2n]f'(n)
xUMOA+ܺ.BI$ho=x4Ĵ\>j] * ; }wRba><ϼ;3USyvk}- ZWPWDԔ9ԛu!qAq2#]a= Cr$"iu-=8p_bC]b7lڮUyWNX\5 ,!2Z zQ hpQs l3# Y`Q. 3AvńV<LƂ@V4IZhIRe^? #c<rY䍰L)hYPGnK֌Gl}ATV 6u}X F}Dzԟ8X qѨ4QӸz[bN/P[:tZ'}-c+ BD6 ag3]#̌1i^#4+twHm;V 14DD?Sp"v7n&Ue&aoT?O?ENffa~p&[ TX 4XHۓ}-e3 Mbצe#MHM!Rs 2ԫ+ '%U$5^0)\T*l*-\T*7Mz%CatdZ2ofվ,FvxB-36fff+<'JN:vi

证明:设f(x)在【a,b】上连续且可导,a>0,则存在m、n属于(a,b),使得f’(m )=[(a+b)/2n]f'(n)
证明:设f(x)在【a,b】上连续且可导,a>0,则存在m、n属于(a,b),使得f’(m )=[(a+b)/2n]f'(n)

证明:设f(x)在【a,b】上连续且可导,a>0,则存在m、n属于(a,b),使得f’(m )=[(a+b)/2n]f'(n)
昨天答过,
设F(x)=f(x),G(x)=x^2在[a,b]上由柯西中值定理得,存在n属于(a,b)使
[f(b)-f(a)]/(b^2-a^2)=f'(n)/2n
又由拉格朗日中值定理知,存在m属于(a,b)使
f(b)-f(a)=(b-a)f'(m) 将此式带入上式得
(b-a)f'(m)/(b^2-a^2)=f'(n)/2n
即f'(m)=[(a+b)/2n]f‘(n)于是得证.

...................

首先要看下由ABCD组成的是不是长方形,若不是长方形而是梯形则不可求。
若是长方形则:由条件可以推出,以AO为半径的圆面积:S圆=100π。
因为圆半径相同,所以AO=AE,可以推出AG=EG=BH=FH=5√2,AGE和BHF组成的三角面积共为S=50000
图中,阴影部分为半个圆减去两个三角形的面积构成,所以,阴影的面积=50π-50 你学过吗首先要看下由ABCD组成的...

全部展开

首先要看下由ABCD组成的是不是长方形,若不是长方形而是梯形则不可求。
若是长方形则:由条件可以推出,以AO为半径的圆面积:S圆=100π。
因为圆半径相同,所以AO=AE,可以推出AG=EG=BH=FH=5√2,AGE和BHF组成的三角面积共为S=50000
图中,阴影部分为半个圆减去两个三角形的面积构成,所以,阴影的面积=50π-50 你学过吗首先要看下由ABCD组成的是不是长方形,若不是长方形而是梯形则不可求。
若是长方形则:由条件可以推出,以AO为半径的圆面积:S圆=100π。
因为圆半径相同,所以AO=AE,可以推出AG=EG=BH=FH=5√2,AGE和BHF组成的三角面积共为S=50任意常数C=无穷你洗洗睡吧 还有,你
图中,阴影部分为半个圆减去两个三角形的面积构成,所以,阴影的面积=50π-50
所以由定理知成立啊 对吧。

收起

图中,阴影部分为半个圆减去两个三角形的面积构成,所以,阴影的面积=50π-50 你学过吗首先要看下由ABCD组成的是不是长方形,若不是长方形而是梯形则不可求。
若是长方形则:由条件可以推出,以AO为半径的圆面积:S圆=100π。
因为圆半径相同,所以AO=AE,可以推出AG=EG=BH=FH=5√2,AGE和BHF组成的三角面积共为S=50任意常数C=无穷你洗洗睡吧 还有,你

全部展开

图中,阴影部分为半个圆减去两个三角形的面积构成,所以,阴影的面积=50π-50 你学过吗首先要看下由ABCD组成的是不是长方形,若不是长方形而是梯形则不可求。
若是长方形则:由条件可以推出,以AO为半径的圆面积:S圆=100π。
因为圆半径相同,所以AO=AE,可以推出AG=EG=BH=FH=5√2,AGE和BHF组成的三角面积共为S=50任意常数C=无穷你洗洗睡吧 还有,你
图中,阴影部分为半个圆减去两个三角形的面积构成,所以,阴影的面积=50π-50

收起

设函数f(x)在[a,b]上连续,(a,b)可导,且f(a)=0,证明至少存在一点ξ∈(a设函数f(x)在[a,b]上连续,(a,b)可导,且f(a)=0,证明至少存在一点ξ∈(a,b),使得f(ξ)=(b-ξ)*f'(ξ) 证明:设f(x)在【a,b】上连续且可导,a>0,则存在m、n属于(a,b),使得f’(m )=[(a+b)/2n]f'(n) 设函数f(x)在[a,b]上连续,在(a,b)可导,且f(a)*f(b)>0,f(a)*f((a+b)/2) 微积分 定积分证明 “设f(x)为正,且在[a,b]上连续...” 设f(x)在[a,b]上连续,且没有零点,证明f(x)在[a,b]上保号 证明设f(x)在有限开区间(a,b)内连续,且f(a+) ,f(b-)存在,则f(x)在(a,b)上一致连续. 可导与一致连续设f 在[a,+∞)上可导,且f ’(x)当x→+∞时极限存在,证明 f 在[a,+∞)上一致连续 设f(x)在[a,b]上连续,且a 设f(x)在[a,b]上连续,且a 设f(x)在[a,b]上连续,且a 设f(x)在【0,1】上连续,在(0,1)可导,且f(1)=0,证明至少存在一点a,a属于(0,1),使得f ' (x)=-2f(a)/a 设f(x)在[a,b]上连续,在(a,b)可导,且f(a)=f(b)=0,证明存在c属于(a,b),使f'(c)+f(c)^2=0注意要证明的是二次方 ◆微积分 证明 设f(x)在[a,b]连续,在(a,b)可导,f(a) = 0... 设f(x)在区间[a,b]连续,在(a,b)可导,那么f(x)的导数在区间(a,b)上的导数是否连续?怎么证明?或反例?设f(x)在区间[a,b]连续,在(a,b)可导,那么f(x)的导数在区间(a,b)上的导数是否有界?怎么证 高数证明题!设f(x),g(x)在[a,b]连续且可导,g'(x)不等于0,证明存在ζ∈(a,b)使f(ζ)-f(a)/g(b)-g(ζ)=f’(ζ)/g'(ζ). 设函数fx在(a,b]上连续,且f(a+0)存在.证明f(x)在(a,b]内有界. 设f(x)在【a,b】上连续,证明 若在[a,b]上,f(x)〉=0,且f(x)在【a,b】上的积分=0,则f(x)=0 设函数f(x)在区间[a,b]上连续,且f(a)b.证明:至少存在一点ξ∈(a,b),使得……高等数学(上)…1、设函数f(x)在区间[a,b]上连续,且f(a)b.证明:至少存在一点 ξ ∈(a,b),使得f(ξ)=ξ.2、sinx的原函数是?