已知,在△ABC中,∠B=60°,AD,CE分别平分∠BAC,∠BCA,求证:AC=AE+DC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 01:56:15
xSNA}Btbdvo0KBW1J0H@b'&DcP%Qn+^iKKAofg;ߙ|SJo_lZVsmMGd+y8>;f)1Epf?/o?:9x8eB?(K1uG4tviWIێZZ/E)j^Q՚u~u-# & ' ؍<ń ) 8>1]I0щ^ !-b`bbWcoFJ<hA}-RӁ1vv|!%bx#j1vTd{y
ch"+k+%D@dq@7Z$ҕXJ<|A\B$]"0
C\ᘱQ\Zb&'Zk~h~?_XmnlFaw& {4++?ewKvM~QՌU(-E}XT&N6sr<@Uh343Su)GԃDr\5gKܔ-!sn˕yHo;m5K]u<"N#~vڎ1UcaKdsQdX
已知,在△ABC中,∠B=60°,AD,CE分别平分∠BAC,∠BCA,求证:AC=AE+DC
已知,在△ABC中,∠B=60°,AD,CE分别平分∠BAC,∠BCA,求证:AC=AE+DC
已知,在△ABC中,∠B=60°,AD,CE分别平分∠BAC,∠BCA,求证:AC=AE+DC
在AC上取一点F,使得AF=AE,连接OF.下面证明:CF=CD
∵AD是角平分线
∴∠EAO=∠FA0
又AE=AF,AO=AO
∴:△AEO≌△AFO(SAS)
∴∠AOE=∠AOF
又∠B=60°
∴∠BAC+∠BCA=120°
∴∠AOE=∠OAC+∠OCA=(∠BAC+∠BCA)/2=60°
∴∠AOF=∠AOE=60°
∴∠COF==∠AOE=∠COD=180°-60°-60°=60°
∵∠COF=∠COD
又∠OCD=∠OCF,OC=OC
∴△OCD≌△OCF(ASA)
∴CF=CD
∴AC=AF+CF=AE+CD
如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求∠AOE的度数
已知:如图,在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O.求证,AE+CD=AC.
如图.已知在△ABC中.∠B=60°.△ABC的角平分线AD.CE相交于点O.求证:AE+CD=AC
1、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:OE=OD
已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:OE=OD
已知:如图,在△ABC中,∠B=∠C,AD平分外角∠EAC,说明AD//BC.
已知,在△ABC中,∠B=∠C,AD是∠EAC的平分线,求证:AD//BC
已知 如图 在△ABC中,AD⊥BC,∠1=∠B,求证:△ABC为直角三角形
已知;如图,在△ABC中,AD⊥BC,∠1=∠B,求证;△ABC为直角三角形
如图所示,已知在△ABC中,∠B=60°,AD,CE,是△ABC的角平分线,且交于点O.求证:A如图所示,已知在△ABC中,∠B=60°,AD,CE,是△ABC的角平分线,且交于点O.求证:AC=AE+CD.
在△ABC中,已知AD是角平分线,∠B=60°,∠C=45°,求∠ADB和∠ADC的度数.
在△ABC中,已知AD是角平分线,∠B=60°,∠C=50°,求∠ADB和∠ADC的度数
已知,在△ABC中,∠B=60°,AD,CE分别平分∠BAC,∠BCA,求证:AC=AE+DC
已知:如图,在△abc中,ad吃,ad⊥bc,∠1=∠b.求证:△abc为直角三角形
如图,在△ABC中,AC=BC,∠C=90°,AD平分∠CAB,过B作BE⊥AD,交AD的延长线于E,又已知AD=6cm,求BE的长
已知:如图,在△ABC中,点E在边BA的延长线上,∠B=∠C,AD平分∠EAC,求证:AD∥BC
1如图:已知△ABC中,AD平分∠ABC,E是BC延长线上一点,∠B=∠EAC.求证:点E在AD的垂直平分线上1、如图:已知△ABC中,AD平分∠ABC,E是BC延长线上一点,∠B=∠EAC.求证:点E在AD的垂直平分线上
如图所示,已知在△ABC中,AD为BC边上的高,∠B=45°,∠C=30°,AD=4,求△ABC的面积.