如图,B是线段AD上的一点,ABC和△BDE都是等边三角形,连接AE,CD,点P,Q分别是AE,CD的中点,判断PBQ如图,B是线段AD上的一点,△ABC和△BDE都是等边三角形,连接AE,CD,点P,Q分别是AE,CD的中点,判△PBQ的形状,说
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 12:59:01
如图,B是线段AD上的一点,ABC和△BDE都是等边三角形,连接AE,CD,点P,Q分别是AE,CD的中点,判断PBQ如图,B是线段AD上的一点,△ABC和△BDE都是等边三角形,连接AE,CD,点P,Q分别是AE,CD的中点,判△PBQ的形状,说
如图,B是线段AD上的一点,ABC和△BDE都是等边三角形,连接AE,CD,点P,Q分别是AE,CD的中点,判断PBQ
如图,B是线段AD上的一点,△ABC和△BDE都是等边三角形,连接AE,CD,点P,Q分别是AE,CD的中点,判△PBQ的形状,说明理由,.
如图,B是线段AD上的一点,ABC和△BDE都是等边三角形,连接AE,CD,点P,Q分别是AE,CD的中点,判断PBQ如图,B是线段AD上的一点,△ABC和△BDE都是等边三角形,连接AE,CD,点P,Q分别是AE,CD的中点,判△PBQ的形状,说
△PBQ是等边三角形.
理由:∵△ABC和△BDE分别是等边三角形,
∴AB=CB,BE=BD,
∴∠ABC=∠DBE=60°,
∴∠ABC+∠CBE=∠DBE+∠CBE,
即∠ABE=∠CBD,
在△ABE和△CBD中,
AB=CB
∠ABE=∠CBD
BE=BD,
∴△ABE≌△CBD(SAS),
∴AE=CD,∠EAB=∠DCB,
∵点P、Q分别是AE、CD的中点,
∴AP= 1/2AE,CQ= 1/2CD,
∴AP=CQ,
在△ABP和△CBQ中,
AB=CB
∠EAB=∠DCB
AP=CQ,
∴△ABP≌△CBQ(SAS),
∴∠PBA=∠QBC,PB=QB,
∴∠QBP=∠PBC+∠QBC=∠PBC+∠PBA=∠ABC=60°,
∴△PBQ是等边三角形.
△PBQ是等边三角形.
理由:∵△ABC和△BDE分别是等边三角形,
∴AB=CB,BE=BD,
∴∠ABC=∠DBE=60°,
∴∠ABC+∠CBE=∠DBE+∠CBE,
即∠ABE=∠CBD,
在△ABE和△CBD中,
AB=CB
∠ABE=∠CBD
BE=BD,
∴△ABE≌△CBD(SAS),
∴AE=...
全部展开
△PBQ是等边三角形.
理由:∵△ABC和△BDE分别是等边三角形,
∴AB=CB,BE=BD,
∴∠ABC=∠DBE=60°,
∴∠ABC+∠CBE=∠DBE+∠CBE,
即∠ABE=∠CBD,
在△ABE和△CBD中,
AB=CB
∠ABE=∠CBD
BE=BD,
∴△ABE≌△CBD(SAS),
∴AE=CD,∠EAB=∠DCB,
∵点P、Q分别是AE、CD的中点,
∴AP= 1/2AE,CQ= 1/2CD,
∴AP=CQ,
在△ABP和△CBQ中,
AB=CB
∠EAB=∠DCB
AP=CQ,
∴△ABP≌△CBQ(SAS),
∴∠PBA=∠QBC,PB=QB,
∴∠QBP=∠PBC+∠QBC=∠PBC+∠PBA=∠ABC=60°,
∴△PBQ是等边三角形
收起
直角三角形