一个关于导数的证明题~证明:设f(x)在[0,1]上有二阶导数,且f(1)=0,若F(x)=x2f(x),则在(0,1)内至少存在一点ξ,使得F’’(x)=0.【上面那个x2也是平方的意思】
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 12:59:37
xݒj@_%7MI>CA<EKN%ZUhkH"QD>D1i=?z&Xݥ.[܍jn<>ENXMcZ$\--TA%J#bԞk4CE"O9e>[GC Efiqer5{8O:7?`O>z=W.K4yF9D#k~T`(%4a1&94ćL0Qò9]+?_&oBA+&|.I$/re\?1
一个关于导数的证明题~证明:设f(x)在[0,1]上有二阶导数,且f(1)=0,若F(x)=x2f(x),则在(0,1)内至少存在一点ξ,使得F’’(x)=0.【上面那个x2也是平方的意思】
一个关于导数的证明题~
证明:设f(x)在[0,1]上有二阶导数,且f(1)=0,若F(x)=x2f(x),则在(0,1)内至少存在一点ξ,使得F’’(x)=0.【上面那个x2也是平方的意思】
一个关于导数的证明题~证明:设f(x)在[0,1]上有二阶导数,且f(1)=0,若F(x)=x2f(x),则在(0,1)内至少存在一点ξ,使得F’’(x)=0.【上面那个x2也是平方的意思】
F'(X)=2xf(x)+f'(x)x2
F'(0)=0 F'(1)=0
则 根据拉格朗日中值定理 得 必存在一点ξ
使得F(ξ)=[F'(0)-F'(1)]/0-1
即 F''(ξ)=0
一个关于导数的证明题~证明:设f(x)在[0,1]上有二阶导数,且f(1)=0,若F(x)=x2f(x),则在(0,1)内至少存在一点ξ,使得F’’(x)=0.【上面那个x2也是平方的意思】
导数基础题设f(x)在R上可导,求f(-x)在x=a处的导数与f(x)在x=-a处的导数的关系.画图看是相反数,证明过程怎么写?
一道关于证明拐点的问题!原题:设y=f(x)在x=x0的某邻域内具有三阶连续导数,如果f(x0)的二阶导数等于0,而f(x0)的三阶导数不等于0,试问(x0,f(x0))是否为拐点?为什么?{因为f(x)的三阶导数在x0
关于中值定理的证明题,F(x)=(x+2)^2*f(x),f(x)在[-2,5]上有二阶导数,f(5)=0证明:ξ在(-2,5)上,F(ξ)的二阶导数等于0
一道关于函数连续性的证明题设y=f(x)在开区间I=(a,b)上连续并严格单调,证明:y=f(x)的值域f(I)也是一个开区间.
有关高数的证明题设函数 f(x)在[0,∞)上有二阶连续导数,且对任意x>=0有 f(x)的二阶导数>=k,其中k>0为一常数,f(0)
李永乐复习全书的一道证明题设f(x)在(a,b)内可导,且limf(x)当x趋向于a的右极限=limf(x)当x趋向于b的左极限=A,求证:(a,b)内存在一个&,使得f(&)的导数等于0.书上是这样证明的:若f(x)
设函数f(x)在〔1,2〕上有二阶导数,且f(1)=f(2)=0,又F(x)=(x-1)^2f(x),那么F(x)的二阶导数在(1,2)那么F(x)的二阶导数在(1,2)上有零点.这是个证明题,有没有人会做
高数证明题设函数F(x)=(x+2)^2 f(x),f(x)在【-2,5】有二阶导数,f(5)=0,证明m属于(-2,5)使F’’(m)=0
大一高数关于泰勒公式的题设f(x)=a0xn+a1xn-1+.+an且a0≠0,又设f(k)(a)≥0,(k=0,1,.n),证明:f(x)在(a,+∞)内无零点.我的思路是将f(x)在x=a处用泰勒公式展开,然后求导证明f(x)导数不小于零,
证明题 设f(x)为连续函数,F(t)=∫(1~t)dy∫(y~t)f(x)dx 1.证明:F(t)=∫(1~t)(x-1)f(x)dx2.求F(2)的导数
设f(x)在【0,1】上有二阶导数,f(1)=0,F(x)=x^2f(x),证明在(0,1)内至少有一点的二阶导数等于0.
关于导数证明,若f(x)在R上可导,证明:若f(x)为偶函数,则f'(x)为奇函数.
f(x)在点x=0处具有连续的二阶导数,证明f证明f(x)的二阶导数有界
对于任意正数a,b有f(ab)=f(a)+f(b),且f(1)的导数=1 证明f(x) 在零到正无穷可导,求f(x) 设f(x)函数满足f(x1+x2)=f(x1)*f(x2),其中x1,x2为任意实数,而且已知f(0)的导数=2求f(x)f(x)的导数f(a*b)这题答案第一个好象
对于任意正数a,b有f(ab)=f(a)+f(b),且f(1)的导数=1 证明f(x) 在零到正无穷可导,求f(x) 设f(x)函数满足f(x1+x2)=f(x1)*f(x2),其中x1,x2为任意实数,而且已知f(0)的导数=2 求f(x) f(x)的导数f(a*b) 这题答案第一个好
设f(x)在x=x0的临近有连续的2阶导数,证明:lim(h趋近0)f(x0+h)+f(x0-h)-2f(x0)/h^2=f(x0)的2阶导数
一道导数题求教设函数f(x)在【a,b】上连续,在(a,b)上可导,证明在(a,b)内至少存在一点m,使f'(m)=【f(m)-f(a)】/b-m分析说:要证明(b-m)f'(m)-【f(m)-f(a)}】=0即要证明{(b-x)【f(x)-f(a)】'+(b-x)'【f