如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.1、求角AEB的大小.2、如图2,三角形OAB固定不动,保持三角形OCD的形状和大

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 16:38:56
如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.1、求角AEB的大小.2、如图2,三角形OAB固定不动,保持三角形OCD的形状和大
xV]OV+Rw+%Hȵ/*l+d Ӥ] h (m1%#P@Sv {mX i&W~~@])n6"V<Ia!.?'9}A4 TZn|wsSoK`5S;Wr>:G=] ô}?WU~ދOPm|Xnl]C=:k lZU=L*.`6 h/9oڞ"#NF p6]ٹW^Nfzض+@OS>

如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.1、求角AEB的大小.2、如图2,三角形OAB固定不动,保持三角形OCD的形状和大
如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.
1、求角AEB的大小.
2、如图2,三角形OAB固定不动,保持三角形OCD的形状和大小不变,将三角形OCD绕着点旋转,求角AEB的大小
图1
 
 
图2

如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.1、求角AEB的大小.2、如图2,三角形OAB固定不动,保持三角形OCD的形状和大
1、
∵等边△OAB、等边△OCD
∴OA=OB、OC=OD,∠OAB=∠OBA=∠AOB=∠COD=60
∵∠AOC=∠AOB+∠BOC、∠BOD=∠COD+∠BOC
∴∠AOC=∠BOD
∴△AOC≌△BOD (SAS)
∴∠CAO=∠DBO
∴∠BEC=∠ABE+∠CAB=∠OBA+∠DBO+∠CAB=∠OBA+∠CAO+∠CAB=∠OBA+∠OAB=120
∴∠AEB=180-∠BEC=60°
2、
∵等边△OAB、等边△OCD
∴OA=OB、OC=OD,∠OAB=∠OBA=∠AOB=∠COD=60
∵∠AOC=∠AOB+∠BOC、∠BOD=∠COD+∠BOC
∴∠AOC=∠BOD
∴△AOC≌△BOD (SAS)
∴∠CAO=∠DBO
∴∠BEC=∠ABE+∠CAB=∠OBA+∠DBO+∠CAB=∠OBA+∠CAO+∠CAB=∠OBA+∠OAB=120
∴∠AEB=180-∠BEC=60°
2的解法实际与1完全一样,关键的是∠AOC=∠BOD
数学辅导团解答了你的提问,

(1)∵∠AEB是△DEA的外角 即∠AEB=∠EDA+∠EAD
又∵△COA全等△BOD 即∠CAO=∠DBO
∴∠AEB=∠EDA+∠DBO
又∵∠BOA是△BDO的外角
即∠BOA=∠EDA+∠DBO
∴∠AEB=∠EDA+∠DBO=∠BOA
∴∠AEB=60°
(2)旋转之后,上面的推理过程仍然成立
很高兴为您解答...

全部展开

(1)∵∠AEB是△DEA的外角 即∠AEB=∠EDA+∠EAD
又∵△COA全等△BOD 即∠CAO=∠DBO
∴∠AEB=∠EDA+∠DBO
又∵∠BOA是△BDO的外角
即∠BOA=∠EDA+∠DBO
∴∠AEB=∠EDA+∠DBO=∠BOA
∴∠AEB=60°
(2)旋转之后,上面的推理过程仍然成立
很高兴为您解答,祝你学习进步!
请点击下面的【选为满意回答】按钮
有不明白的可以追问!如果您认可我的回答。

收起

1、如图,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和...1、如图,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角 初二数学题点O是线段AD的中点 分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形O1.如图.点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC (1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,求∠AEB的 如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.(1)求AEB的大小(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变, 如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.1、求角AEB的大小.2、如图2,三角形OAB固定不动,保持三角形OCD的形状和大 几何旋转问题(1)如图7,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.求∠AEB的大小;(2)如图8,ΔOAB固定不动,保持ΔOCD的 )(1)如图7,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.求∠AEB的大小;(2)如图8,ΔOAB固定不动,保持ΔOCD的形状和大小 根据下列各图回答问题:1 如图1 点O是线段AD的中点 分别以AO DO为边 在线段AD的同侧作等边三角形OAB和等边三角形OCD 连接Ac和BD 相交与点E 连接BC,求∠AEB的大小;2 如图2 △OAB固定不动,保持△OC 八年级全等三角形试题(最好附上解析)1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;(2)如图2 如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD(1) 求证:△AOC≌△DOB;(2) 求∠AEB的大小:(3) 如图2,△OAB固定不动,保持△OCD的形状 问一道初三几何题我问第二问 第一问忽略 但数据有用(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大 如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD11) 求证:△AOC≌△DOB;(2) 求∠AEB的大小: 如图,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC。求∠AEB的大小。 连接AC与BD,相交于点E,连接BC.求∠AEB的大小.(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OCD和等边三角形OCD.连接AC与BD,相交于点E,连接BC.求∠AEB的大小.(2)如图 如图17 点O是线段AD的中点,分别以AO和DO 为边在AD的同侧作等边三角形OAB和等边三角形OCD 连接AC和BD 相交于点E 连接BC △OAB固定不动 将△OCD 绕着点O旋转 求∠AEB的大小 如图,已知线段AB,点O是线段AB上的点,CD分别是AO.OB的中点 如图,在四边形ABCD中,点O是CD的中点,AO、BO分别平分AO、BO分别平分角BAD,角ABC,角AOB=120度.求证:AD+1/2DC+BC=AB 如图1,点O是线段AD的重点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC1.求∠AEB的大小.2.如图2,三角形OAB固定不动,保持三角形OCD的形状和大小不