数列an的每一项都为正数,a1=1/2,a2=4/5,且对满足m+n=p+q的正整数m,n,p,q都有(am+an)/[(1+am)(1+an)]=(ap+aq)/[(1+ap)(1+aq)],记bn=(1-an)/(1+an),证明bn是等比,并由此求数列an的通项
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 16:49:16
数列an的每一项都为正数,a1=1/2,a2=4/5,且对满足m+n=p+q的正整数m,n,p,q都有(am+an)/[(1+am)(1+an)]=(ap+aq)/[(1+ap)(1+aq)],记bn=(1-an)/(1+an),证明bn是等比,并由此求数列an的通项
数列an的每一项都为正数,a1=1/2,a2=4/5,且对满足m+n=p+q的正整数m,n,p,q都有(am+an)/[(1+am)(1+an)]=(ap+aq)/[(1+ap)(1+aq)],记bn=(1-an)/(1+an),证明bn是等比,并由此求数列an的通项
数列an的每一项都为正数,a1=1/2,a2=4/5,且对满足m+n=p+q的正整数m,n,p,q都有(am+an)/[(1+am)(1+an)]=(ap+aq)/[(1+ap)(1+aq)],记bn=(1-an)/(1+an),证明bn是等比,并由此求数列an的通项
令m=2 q=1 p=n+1
(a2+an)/[(1+a2)(1+an)]=(ap+a1)/[(1+ap)(1+a1)],
(4/5+an)/[(1+4/5)(1+an)]=(ap+1/2)/[(1+ap)(1+1/2)],
(4/5+an)/[3/5(1+an)]=(ap+1/2)/[(1+ap)/2]
(4+5an)/[3(1+an)]=(2ap+1)/(1+ap)
1/3*(4+5an)/(1+an)*2=(2ap+1)/(1+ap)*2
1/3*(9-(1-an)/(1+an))=3-(1-ap)/(1+ap)
1/3bn=bp=b(n+1)
所以bn是等比,公比是1/3
b1=1/3
bn=1/3^n=(1-an)/(1+an)
an=(3^n-1)/(3^n+1)
,