解析几何抛物线y^2=4X 焦点F 过K(-1,0)的直线l与抛物线交与A B两点 点A关于X轴的对称点是D (A在B左边) FA*FB=8/9 (这是向量) 求三角形BDK的内切圆方程我是想要求内切圆的方法 联立这种东

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 14:55:29
解析几何抛物线y^2=4X 焦点F 过K(-1,0)的直线l与抛物线交与A B两点 点A关于X轴的对称点是D (A在B左边) FA*FB=8/9 (这是向量) 求三角形BDK的内切圆方程我是想要求内切圆的方法 联立这种东
xRKoQ+LLt[cH -Ї0x%h;,* XSDj|rRJ0ϩ0ň!-aX

解析几何抛物线y^2=4X 焦点F 过K(-1,0)的直线l与抛物线交与A B两点 点A关于X轴的对称点是D (A在B左边) FA*FB=8/9 (这是向量) 求三角形BDK的内切圆方程我是想要求内切圆的方法 联立这种东
解析几何
抛物线y^2=4X 焦点F 过K(-1,0)的直线l与抛物线交与A B两点 点A关于X轴的对称点是D (A在B左边)
FA*FB=8/9 (这是向量) 求三角形BDK的内切圆方程
我是想要求内切圆的方法 联立这种东西我当然会做

解析几何抛物线y^2=4X 焦点F 过K(-1,0)的直线l与抛物线交与A B两点 点A关于X轴的对称点是D (A在B左边) FA*FB=8/9 (这是向量) 求三角形BDK的内切圆方程我是想要求内切圆的方法 联立这种东
设A(x1,y1) B(x2,y2) ,由题得D(x1,-y1)
设直线AB方程为y=k(x+1),带入抛物线.然后用向量的条件求出 k,A,B,D这几个未知数.然后怎么做我想你自己也知道了.
内切圆:先做出三角形中其中两边的直线方程,然后在求出这两边的中垂线方程,再求出交点.则该交点为内切圆心,在用点到点的距离求出半径,就得到内切圆的方程了.

没什么固定的方法,,定圆心半径就好了

设A(x1,y1) B(x2,y2) ,由题得D(x1,-y1)
设直线AB方程为y=k(x+1),带入抛物线。然后用向量的条件求出 k,A,B,D这几个未知数。

解析几何抛物线y^2=4X 焦点F 过K(-1,0)的直线l与抛物线交与A B两点 点A关于X轴的对称点是D (A在B左边) FA*FB=8/9 (这是向量) 求三角形BDK的内切圆方程我是想要求内切圆的方法 联立这种东 一道高中解析几何设抛物线C:y^2=16的焦点为F,过点Q(-4,0)的直线l与抛物线C相交于A,B两点,若|QA|=2|QB|,则直线l的斜率k=? 简单的高中解析几何过抛物线y^2=4x的准线与x轴交点E作直线交抛物线于A、B两点,F是抛物线的焦点,若向量FA·向量FB=0,求直线AB的方程. 15,已知F是抛物线C:y^2=4x的焦点,过F且斜率为K(K>0)的直线交C于A,B两点,设向量AF=3向量FB,则K等于? 过抛物线y^2=4x的焦点F作斜率为K的直线l,交抛物线于A,B两点,若线段AB的长不超过8,求K的取值范围 已知抛物线C:y2(方)=4x的焦点为F,过点K(-1,0)的直线L与C相交于A.B两点,点A关于X轴的对称点为D.抛物线C:y^2=4x①的焦点为F(1,0),设过点K(-1,0)的直线L:x=my-1, 数学解析几何:已知P(4,-1),F为抛物线y^2=8x的焦点,在此抛物线上求一点Q使|PQ|+|QF|的值最小,则点Q坐标 已知抛物线y^2=4x,F为抛物线的焦点且PQ为过焦点的弦,若|PQ|=8求△OPQ的面积 已知抛物线y^2=-4x的焦点为F,其准线与x轴交于点M,过M作斜率为K的直线l与抛物线交于A、B两点,弦AB的.已知抛物线y^2=-4x的焦点为F,其准线与x轴交于点M,过M作斜率为K的直线l与抛物线交于A、B两点, 解决几道解析几何题1.过椭圆x^/2 + y^ = 1的右焦点F2的直线L交椭圆于P,Q,则判断以PQ为直径的圆和以长轴为直径的圆的位置关系.2.过抛物线X^=4Y的焦点F的直线L交抛物线于A,B两点.证明:分别以A,B 过抛物线y^2=4x的焦点F作倾斜角为45的直线交抛物鲜于AB两点,求抛物线的焦点F的坐标及准线方程过抛物线y^2=4x的焦点F作倾斜角为45的直线交抛物鲜于AB两点,1,求抛物线的焦点F的坐标及准线方程 过抛物线 Y平方=4X 焦点弦的中点轨迹方程是?我求出了中点(k^+2 /k^ ,2/k )然后怎么样? 设F抛物线y^2=4x的焦点,过点F作直线交抛物线于MN两点,则三角形MON的面积最小值是 高中解析几何题...急在平面直角坐标系中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在轴上.(1)求抛物线C的标准方程;(y^2=2x)(2)求过点F,且与直线OA垂直的直线的方程;(3)设过点M(m,0)(m>0) 过抛物线C:x^2=4y的焦点F作直线L,交C于A,B两点.若F恰好为线段AB的三等分点,则直线L的斜率K=? 已知椭圆c的中心在坐标原点,长轴长为4,且抛物线y方=4x的准线领过椭圆的一个焦点,求椭圆方程,2,设过焦点f的直线y=k(x-1),k不等于0,交椭圆与ab两点,试问在x轴是否存在定点p让pf始终评分角apb. 过抛物线y^2=4x的焦点f而垂直于x轴的抛物线的弦AB的长等于___ 设F是抛物线C:y^2=4x的焦点,过点A(-1,0)斜率为k的直线与C相交M,N两点 (1)设设F是抛物线C:y^2=4x的焦点,过点A(-1,0)斜率为k的直线与C相交M,N两点 (1)设向量FM与向量FN的夹角为120度,求k的值