如图,在矩形ABCD中,对角线AC和BD相交于点O,E为矩形ABCD外地一点,且AE⊥CE,求证:BE⊥DE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 17:12:43
如图,在矩形ABCD中,对角线AC和BD相交于点O,E为矩形ABCD外地一点,且AE⊥CE,求证:BE⊥DE
xSn@*RԊvGc֖ȏ1AHJ" H&Z( ɉB+)d_I` ,,==wf-{s+PQrk󓬨Z|hd>䵢{A8>ǝykS8 k~tލWap9* xz|bj\NhlV*pYBDrڽJԴ#ފUJ%]С%]^N:%mHM!폺% 8pV$NI$"1%jU]NI"e/'GQW@D$顉{Fx9 `mYO ߗrCs[%jͦw|jfϛk?[}E͵iB۬ZBݽd |հE/X-8*0%- "L,Tr l(-^pOXOCxԨ[܌V^Nzn9 x%nsńy8f'Jau%wAoG0< !$ĤƬۇg@ a8^gyozGkd׮ s:

如图,在矩形ABCD中,对角线AC和BD相交于点O,E为矩形ABCD外地一点,且AE⊥CE,求证:BE⊥DE
如图,在矩形ABCD中,对角线AC和BD相交于点O,E为矩形ABCD外地一点,且AE⊥CE,求证:BE⊥DE

如图,在矩形ABCD中,对角线AC和BD相交于点O,E为矩形ABCD外地一点,且AE⊥CE,求证:BE⊥DE
连接OE,在△AEC中,
∵AE⊥EC,OA=OC,
∴OE=OA.
又∵OA=OB=OC=OD,
∴OE=OB=OD,∴∠OBE=∠OEB,∠OED=∠ODE.
∵∠ODE+∠OED+∠OBE+∠OEB=180°,
∴2(∠OEB+∠OED)=180°,
∴∠BED=90°,∴BE⊥DE.

证明:

连接EO

∵四边形ABCD为矩形 ∴OA=OC=OD=OB

在Rt△AEC中 AE⊥CE,OA=OC 

∴EO=OA=OD=OB

∴△BED为Rt三角形(OE=OD=OB 斜边的中线为斜边的一半的三角形是直角三角形)

∴∠BED=90° ∴DE⊥BE

如图,在矩形ABCD中,对角线AC和BD相交于点O,E为矩形ABCD外地一点,且AE⊥CE,求证:BE⊥DE 如图,在平行四边形abcd中,对角线ac,bd分别为直角三角形ace和直角三角形bde的斜边 求证:平行四边形ABCD是矩形 如图,在四边形ABCD中,对角线AC,BD分别为直角三角形ACE和直角三角形BDE的斜边.求证:四边形ABCD为矩形. 如图,在四边形ABCD中,对角线AC,BD分别为直角三角形ACE和直角三角形BDE的斜边.求证:四边形ABCD为矩形. 如图,在矩形abcd中 对角线ac与bd相交于点o 角ACB=30° BD=4 求矩形ABCD的面积 如图,在矩形ABCD中,对角线AC与BD相交于点O,角ACB=30度,BD=4,求矩形ABCD的面积. 如图:在矩形abcd中,对角线ac与bd相交于点o,∠acb=30度,bd=4,去矩形的abcd的面积. 如图,在矩形ABCD中,对角线AC与BD相交于点O,角ACB=30度,BD=4,求矩形ABCD的面积. 如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOD=120°,AB+AC=9,求对角线BD的长及 如图,在矩形ABCD中,对角线AC与BD相交于O.矩形周长20CM四个小三角形周长68CM,则对角线长? 如图,在矩形ABCD中,对角线AC,BD交于点O,AD=4cm.角AOD=60°,求矩形ABCD的面积 如图在矩形ABCD中,对角线AC,BD交于点O,AD=4cm,∠AOD=60°,求矩形ABCD的面积 如图,在矩形ABCD中,对角线AC、BD相交于点O,∠AOD=120°,AB+AC=9,求对角线BD的长及矩形ABCD的面积. 如图,在矩形ABCD中,对角线 在矩形ABCD中,ab:bc=3:4,ac+bd=20,球矩形周长和面积?如图一如图二,矩形ABCD的对角线ac、bd相交于点o,ab=4,∠aob=60度,求对角线ac的长? .已知:如图,矩形ABCD的对角线AC和BD相交于O,E、F、 G、H分别为OD、OA、OB、OC的中.已知:如图,矩形ABCD的对角线AC和BD相交于O,E、F、 G、H分别为OD、OA、OB、OC的中点.试说明:E、F、G、H四个点在以 已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,E为ABCD外一点,且AE⊥CE,求证:BE⊥DE 如图,在平行四边形abcd中,o是对角线ac与bd的交点,∠1=∠2,求证四边形abcd是矩形