已知a、b、c∈R+,且a+b+c=1求证:(1+a)(1+b)(1+c)≥8(1-a)(1-b)(1-c)利用条件a+b+c=1,应该是用a+b+c代替1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 10:40:33
已知a、b、c∈R+,且a+b+c=1求证:(1+a)(1+b)(1+c)≥8(1-a)(1-b)(1-c)利用条件a+b+c=1,应该是用a+b+c代替1
x){}K74&q򣎎 m';$j'i'>b}=4 5DH|ԹBP$ M|ڱ.|{T==OwMy~r`'?&HC#v6FEu6<ٽ:&<_ݭѳi)3NV4yv ^ݻ

已知a、b、c∈R+,且a+b+c=1求证:(1+a)(1+b)(1+c)≥8(1-a)(1-b)(1-c)利用条件a+b+c=1,应该是用a+b+c代替1
已知a、b、c∈R+,且a+b+c=1求证:(1+a)(1+b)(1+c)≥8(1-a)(1-b)(1-c)
利用条件a+b+c=1,应该是用a+b+c代替1

已知a、b、c∈R+,且a+b+c=1求证:(1+a)(1+b)(1+c)≥8(1-a)(1-b)(1-c)利用条件a+b+c=1,应该是用a+b+c代替1
8(1-a)(1-b)(1-c)3
所以(1+a)(1+b)(1+c)≥8(1-a)(1-b)(1-c)成立
没错吖~8(1-a)(1-b)(1-c)