已知函数f(x)当x,y属于R.恒有f(x+y)=f(x)+f(y)当x>0时,f(x)>0,试判断f(x)在(0,+∝)的单调性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 23:34:35
xJ@_
-
l$}_@lMl*AJEыX=(}1iäU(gof_$ODzod2^n>NW|,zsаvSoJ)9P=.x;Pi~ӫ$w-cVnUĦ$v5kE]$]aW^/^W0^
mUDmW5mAձ}Ą 8ֱnrؔhb=c$+NkRȤ\]!(Y)A>&v5JhA\ ݎSp
已知函数f(x)当x,y属于R.恒有f(x+y)=f(x)+f(y)当x>0时,f(x)>0,试判断f(x)在(0,+∝)的单调性
已知函数f(x)当x,y属于R.恒有f(x+y)=f(x)+f(y)当x>0时,f(x)>0,试判断
f(x)在(0,+∝)的单调性
已知函数f(x)当x,y属于R.恒有f(x+y)=f(x)+f(y)当x>0时,f(x)>0,试判断f(x)在(0,+∝)的单调性
已知函数f(x),当x,y属于R时,恒有f(x+y)=f(x)+f(y),求证f(x)是奇函数
已知函数f(x),当x,y属于R时,恒有f(x+y)=f(x)+f(y),求证f(x)是奇函数
已知函数 f(x) ,当x,y 属于 R 时,恒有 f(x+y) = f(x) + f(y).1:求证f(x)是奇函数2:如果 x 属于R+ ,f(x)
已知函数f(x)对任意x,y属于R,都有f(x+y)=f(x)+f(y).当x>0时,f(x)
已知函数f(x)对任意x,y属于R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)
已知函数f(x)当x,y属于R时,恒有f(x+y)=f(x)+f(y).1:求证:f(x)+f(-x)=0.2:若f(-3)=a,试用a表示f(24)
已知函数y-f(x),x属于R+,对任意x,y属于R+,恒有f(xy)=f(x)+f(y),且当x>1时,f(x)
已知函数f(x)当x,y属于R.恒有f(x+y)=f(x)+f(y)当x>0时,f(x)>0,试判断f(x)在(0,+∝)的单调性
已知函数f(x),当x,y属于R时,恒有f(x+y)=f(x)+f(y),当x>0时,f(x)>0,试判断f(x)在(0,正无穷)上的单调性
已知函数f(x),当x,y属于R时,恒有f(x+y)=f(x)+f(y),当x>0时,f(x)>0,试判断f(x)在(0,正无穷)上的单调性
已知函数f(x),当x,y属于R,恒有f(x+y)=f(x)+f(y),当x大于0时,f(x)大于0,判断f(x)在(0,+无穷大)上的单调性.
已知函数f(x),当x,y属于R时,恒有f(x+y)=f(x)+f(y)(1)求证:f(x)是奇函数(2)如果x为正实数,f(x)
已知函数f(x)对一切实数x,y属于R都有f(x+y)=f(x)+f(y),且当x大于0时已知函数f(x)对一切实数x,y属于R都有f(x+y)=f(x)+f(y)求证:(1)f(x)是奇函数;(2)若x>0,f(x)
急,明天要交(关于函数周期)已知F(x)是实数集R上的函数,且对任意x属于R,f(x)=f(x+1)+f(x-1)恒成立1.证明:f(x)是周期函数2.已知f(3)=2,求f(2004)已知函数f(x),当x,y属于R时,恒有f(x+y)=f(x)+f(y)1.求证:f(x)是
已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).若f(3)=4,求f(24)
已知函数f(x),当x,y在R上时,恒有:f(x*y)=x*f(y)+y*f(x).求证函数是奇函数.
已知定义域为R+,值域为R的函数f(x),对于任意x,y属于R+总有f(xy)=f(x)+f(y),当x>1,恒有f(x)>01.求证:f(x)必有反函数2.设f(x)的反函数是f^-1(x),若不等式f^-1(-4^x+k*2^x-1)
已知函数f(x),当x,y属于R时,恒有f(x+y)=f(x)+f(y),求证f(x)为奇函数