{an},{bn}中a1=2,b1=4,an,bn,an+1成等差数列bn,an+1,bn+1成等比数列(n∈N*)(2)证明:1/(a1+b1)+1/(a2+b2)+…1/(an+bn)<5/12
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 11:21:50
xPK1@H9>GAw鍸PDplÈvWL
zyTQ*M|`qx9m HI6+;??n`I}J~?R]8<;mEF]c5ɬ$0{h dCv7m~ՊJwl@}ǟj4Iu =>]~ր=`m@tI|J| nF
{an},{bn}中a1=2,b1=4,an,bn,an+1成等差数列bn,an+1,bn+1成等比数列(n∈N*)(2)证明:1/(a1+b1)+1/(a2+b2)+…1/(an+bn)<5/12
{an},{bn}中a1=2,b1=4,an,bn,an+1成等差数列bn,an+1,bn+1成等比数列(n∈N*)
(2)证明:1/(a1+b1)+1/(a2+b2)+…1/(an+bn)<5/12
{an},{bn}中a1=2,b1=4,an,bn,an+1成等差数列bn,an+1,bn+1成等比数列(n∈N*)(2)证明:1/(a1+b1)+1/(a2+b2)+…1/(an+bn)<5/12
(2)由已知得an=n(n+1),bn=(n+1)^2,所以an+bn=2n^2+3n+1>2n^2+2n=2n(n+1),所以1/an+bn
{an}{bn}中,a1=2,b1=4,an,bn,an+1成A,P,bn,an+1,bn+1成G,P 求an,bn.证明(1/a1+b1)+(1/a2+b2)+...+1/an+bn
数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*)在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*)求出{an},{bn}的通项公式后证明:1/(a1+b1
在数列{an},{bn}中,a1=2,b1=4,……证明:1/(a1+b1)+1/(a2+b2)+…1/(an+bn)<5/12在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*) (1)求a1,a2,a3及b1,b2,b3,由此猜测{an},{bn}
问问在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列通项公式{an}
在各项均为正的数列{An}{Bn}中,A1=2,B1=4,且An、Bn、An+1成等差数列,Bn、An+1、Bn+1(以上n、n+1均为角标)成等比数列,求(1)An、Bn(2)(1/A1+B1)+(1/A2+B2)+(1/A3+B3)+.+(1/An+Bn)
在数列{An},{Bn}中,已知An大于0,Bn大于0,且An,Bn,An+1成等差,Bn,An+1,Bn+1成等比,求An/Bn?A1=1,B1=2
在数列{an},{bn}中,a1=2,b1=4,且an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+1)成等比数列(n€n*)1)求a2,a3,a4及b1,b2,b3,由此猜测{an},{bn}的通项公式;2)证明:1/(a1+b1)+1/(a2+b2)+1/(a3+b3)+~+1/(an+bn)
数列an,bn 中a1=1,b1=5/2,且a(n+1)=3an-2bn,b(n+1)=5an-4bn,求an,bn
在数列{An},{Bn}中,已知An大于0,Bn大于0,且An,Bn,An+1成等差,Bn,An+1,Bn+1成等比,求An/Bn?A1=1,B1=2在数列{An},{Bn}中,已知An大于0,Bn大于0,且An,Bn,An+1成等差,Bn,An+1,Bn+1成等比,A1=1,B1=2求An/Bn?
在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*)(1)求a1,a2,a3及b1,b2,b3,由此猜测{an},{bn}的通项公式,并证明你的结论;(2)证明:1/(a1+b1)+1/(a2+b2)+…1/(an+bn
在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*) (1)求a1,a2,a3及b1,b2,b3,由此猜测{an},{bn}的通项公式,并证明你的结论; (2)证明:1/(a1+b1)+1/(a2+b2)+…1/(an+bn
{an},{bn}中a1=2,b1=4,an,bn,an+1成等差数列bn,an+1,bn+1成等比数列(n∈N*)(2)证明:1/(a1+b1)+1/(a2+b2)+…1/(an+bn)<5/12
已知等比数列an中,a1=2,a4=16,数列bn中,b1=1且bn-bn-1=log2an(n≥2),求bn
设{an}为等差数列,且等比数列{bn}中有b1=a1^2,b2=a2^2,b3^2(a1
在数列{an}和{bn}中,an>0,bn>0,且an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+1)成等比数列,a1=1,b1=2,求an/bn.
基本不等式和数列综合 稍有难度设数列{An},{Bn}中,An=(An-1+Bn-1)/2,Bn=2An-1*Bn-1/(An-1+Bn-1)(n=2,3,...)请按有大到小的次序排列以下各数:根号下(a1*b1)(a1b1是整体在根号里哦),a1,a2,...,an,b1,b2,...bn注:关
用行列式性质证明:(A1-B1,A1-B2,...A1-Bn; A2-B1,A2-B2,...A2-Bn; ...; An-B1,An-B2,...An-Bn)=0
数列题,求证明数列{an}中,a1=1/4,a2=3/4,2an=an+1 +an-1 数列{bn}中,b1小于0,3bn-bn-1=n 前n项和为Sn 求证{bn-an}是等比数列求证{bn}是递增数列