f在[a,b]连续,且有唯一最小值点x0,{xn}为[a,b]中的数列,且{f(xn)}收敛于f(x0),证明{xn}收敛于X0,谢谢

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 08:26:03
f在[a,b]连续,且有唯一最小值点x0,{xn}为[a,b]中的数列,且{f(xn)}收敛于f(x0),证明{xn}收敛于X0,谢谢
xRMO@+=&Fvڛ=ʱbEB2Nib&JQd r)Ur_`V agy3oV;0mnb#|h І m|Tr` Q?yw NOrvr?9^'"8e*?x]Օ) wFyʇ!o~Dzܱ2#sB`?%Yn^+j2me",8И~E$urkq&L8EP [}"^wˆ ˊIXoxy(aÎ*F&4蹿e#ϥkK-T>?|87X&}ϖEXUpϸ1qwwU/XbɻJ!WüגmOMИ!ie +@**k$+{-XZ= 6D g?~@q

f在[a,b]连续,且有唯一最小值点x0,{xn}为[a,b]中的数列,且{f(xn)}收敛于f(x0),证明{xn}收敛于X0,谢谢
f在[a,b]连续,且有唯一最小值点x0,{xn}为[a,b]中的数列,且{f(xn)}收敛于f(x0),证明{xn}收敛于X0,谢谢

f在[a,b]连续,且有唯一最小值点x0,{xn}为[a,b]中的数列,且{f(xn)}收敛于f(x0),证明{xn}收敛于X0,谢谢
证明(用手机打的,只说主要的,我用的是反证法):步骤1:若xn不收敛于x0,则其等价的描述为:存在确定的常数m>0,使得对任意N>0(即不论N多么大),总存在n>N,使得/xn-x0/>=m 步骤2:因函数在[a,b]连续,则必然有函数在[a,x0-m]与[x0+m,b]连续,则函数在两个区间上分别有两个最小值,令P为两个最小值中较小的一个,则必有P>f(x0),并令r=P-f(x0) 步骤3:f(xn)收敛于f(x0),其等价描述为:对任意t>0,总存在关于t的N1>0,使得任意n>N1,有/f(xn)-f(x0)/=P,与任意n>N1,f(xn)

C语言吗?

f在[a,b]连续,且有唯一最小值点x0,{xn}为[a,b]中的数列,且{f(xn)}收敛于f(x0),证明{xn}收敛于X0,谢谢 函数f(x) 在[a,b]上连续,在(a,b)内有唯一极值点,且为极大值点x0,则函数f(x)在 [a,b]上的最大值为? 若f(x)在I上连续,且在I内有唯一极值点x0,则x0为I上的最值点这个命题对吗?注:f(x)在仅在I上连续,但并不一定可导! 几道高数概念题,1 若函数f(x,y)在点(x0,y0)取得极小值,则(x0,y0)必是f(x,y)的A 连续点 B 定义域中的最小值点 C 驻点 D 在(x0,y0)某领域内的最小值2 设函数f(x),g(x)在[a,b]上连续,且f(x)≥g(x),则A ∫( 证明:若函数在区间[x0-a,x0]上连续,在(x0-a,x0)内可导,且limx->x0-(x0左极限)f'(x)存在,则limx->x0-(左极限)f'(x)=x0点左导数 用介值性定理证明:若f(x)与g(x)在[a,b]上连续,且f(a)g(b),则必存在点 x0属属于(a,b),满足f(x0)=g(x0). 关于连续、可微、可导的判断?我知道可微就肯定可导、可导就肯定连续,但就不知怎么判断,对概念性的题目不熟设函数F(X)在点X0及其邻近有定义,且有F(X0+⊿X)-F(X0)=A⊿X+B(⊿X)^2A.B为 若F(x)在【a,b】上连续,且F(a)=F(b),证明:存在点x0属于(a,b),对于任意p,使F(xO)=F(x0+p) 若已知lim[x→x0]f(x)=k ,则必定是( )A f(x)在x0点连续 B f(x)在x0点有定义 C f(x0)在点x0的某去心邻域上有定义 D |f(x)-k|<|x-x0| 隐函数存在定理1的一些疑惑设函数F(x,y)在点P(x0,y0)的某一邻域内具有连续偏导数,且F(x0,y0)=0;Fy(x0,y0)≠0,则方程F(x,y)=0在点(x0,y0)的某一邻域内有恒定能唯一确定一个连续且具 连续函数在闭区间有唯一极大值和极小值设 f ( x ) 在[ a ,b] 上连续,且在( a ,b) 内只有一个极大值点和一个极小值点.求证:极大值必大于极小值. 连续,导数,极限综合题,函数f 在x=x0处连续,且lim(x->x0) f(x)/(x-x0)=A 求 f'(x0)=? 函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点?函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点()A.连续 B.不连续 C.可微 D.不一定可微 若(x0,y0)为有界闭区域D上连续的函数f(x,y)在D内部的唯一的极值点,且 f(若(x0,y0)为有界闭区域D上连续的函数f(x,y)在D内部的唯一的极值点,且 f(x,y)在该点取极大值,则 (x0,y0)是 f(x,y)在D上的最大值 若函数f(x)在点x0处极限存在,则f(x)在点x0处连续A正确 B错误 详细哦、若fx(x0,y0)=fy(x0,y0)=0,则函数f(x,y)在点(x0,y0)处()A.连续 B.偏导数存在 C.有极值 d.可微 若fx(x0,y0),fy(x0,y0)存在,则函数f(x,y)在点(x0,y0)处()A连续且可微 B连续但不一定可微C可微但不一定连续 D不一定可微也不一定连续 设f(x)在(a,b)内连续,x0∈ (a,b)且f(x0)=A>0,证明存在一个邻域U(x0,&)∈(a,b)内使f(x)>(1/2)*a