有理函数的不定积分p(x)/q(x)=p1(x)/q1(x)+p2(x)/q2(x),2/(x+1)(x-1)=1/(x+1)+1/(x-1)是怎样运用上述定理的,要详细

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 14:42:27
有理函数的不定积分p(x)/q(x)=p1(x)/q1(x)+p2(x)/q2(x),2/(x+1)(x-1)=1/(x+1)+1/(x-1)是怎样运用上述定理的,要详细
x){6{M|V˓Oz|ӎ MB a[`fH#0DkThjjTjB8 6cg ?Ovtؿd6=:/5X6"}\6*N/,Ac5Y)`Q[rP m(U+LI (ɫhh] l_\g R1

有理函数的不定积分p(x)/q(x)=p1(x)/q1(x)+p2(x)/q2(x),2/(x+1)(x-1)=1/(x+1)+1/(x-1)是怎样运用上述定理的,要详细
有理函数的不定积分p(x)/q(x)=p1(x)/q1(x)+p2(x)/q2(x),
2/(x+1)(x-1)=1/(x+1)+1/(x-1)是怎样运用上述定理的,要详细

有理函数的不定积分p(x)/q(x)=p1(x)/q1(x)+p2(x)/q2(x),2/(x+1)(x-1)=1/(x+1)+1/(x-1)是怎样运用上述定理的,要详细
∫2/(x+1)(x-1)dx
=∫(1/(x+1)+1/(x-1))dx
=∫1/(x+1)dx+∫1/(x-1)dx
=∫1/(x+1)d(x+1)+∫1/(x-1)d(x-1)
=ln|x+1|+ln|x-1|+C